Journal of Tropical Oceanography >
Dysbiosis of both structure and function of intestinal microbiota in lined seahorses (Hippocampus erectus) as response to Edwardsiella tarda infection
Received date: 2021-06-11
Revised date: 2021-07-22
Online published: 2021-07-26
Supported by
Program for Outstanding Youth of Colleges and Universities(2020KJF007)
Yantai Foundation for Development of Science and Technology(2020LJRC120)
Yantai Foundation for Development of Science and Technology(2019CXJJ040)
Shandong Province Science and Technology Research Program for Colleges and Universities(J18KA146)
LMM
LMB, LMM and LAMB Co-funded Open Funds of the South China Sea Institute of the Chinese Academy of Sciences(LMB20200103)
Weihai Foundation for Development of Science and Technology(2017GNS10)
Bacterial enteritis can cause severe damage to seahorse aquaculture, while little is known about the effects of bacterial pathogen infection on intestinal microbiota of seahorses. In the present study, both bacterial pathogen (Edwardsiella tarda YT1) and seahorse research model of bacterial enteritis previously reported by us were employed to explore the role of bacterial pathogen in intestinal microbiota by high-throughput full-length 16S rRNA gene sequencing. The results showed that E. tarda infection significantly altered the composition and abundance, and significantly decreased diversity of intestinal microbiota of lined seahorses (p<0.05); significantly increased the relative abundance of Proteobacteria (p<0.05), and decreased the abundance of Actinobacteria, Firmicutes, and Bacteroidetes (p<0.05); significantly increased the relative abundance of pathogenic Edwardsiella (p<0.01), while decreasing that of Psychrobacter, Rothia, Macrococcus, and Planococcus (p<0.05) at genera level. It indicates that E. tarda infection can reduce the diversity and relative abundance of intestinal autochthonous microbiota and result in dysbiosis in lined seahorses. Based on the results of bacterial function and correlation, increasing relatively abundance of E. tarda may significantly upregulate its activities of bacterial chemotaxis, flagella assembly, ABC transporter, phosphotransferase system, and lipopolysaccharide biosynthesis pathways (p<0.05), cause decrease of the relative abundance of the core intestinal microbiota of Psychrobacter, Planococcus and Glutamicibacter and suppression of their functional activities of ribosome, RNA degradation, nucleotide excision repair, and fatty acid biosynthesis pathways (p<0.05), induce dysbiosis of intestinal microbiota, and finally result in enteritis. These results may be helpful for further revealing pathogenic mechanism of E. tarda-induced enteritis in seahorses by more detailed metagenomic and metabolomics analysis.
Key words: seahorse; intestinal microbiota; enteritis; dysbiosis; Edwardsiella tarda
ZHANG Lele , ZOU Qiang , TIAN Yanan , LÜ Chunhui , ZHENG Shiyi , JIANG Guangjun , GAO Longkun , HOU Yuping , WANG Kai . Dysbiosis of both structure and function of intestinal microbiota in lined seahorses (Hippocampus erectus) as response to Edwardsiella tarda infection[J]. Journal of Tropical Oceanography, 2022 , 41(2) : 177 -188 . DOI: 10.11978/2021074
表1 样本信息统计表Tab. 1 Statistics of sequencing data from each sample |
样本名称 | 序列数/bp | 碱基数/bp | 平均长度/bp | 最短序列长度/bp | 最长序列长度/bp |
---|---|---|---|---|---|
Con_1 | 40963 | 17215829 | 420.28 | 211 | 478 |
Con_2 | 89292 | 37497350 | 419.94 | 208 | 527 |
Con_3 | 53207 | 22541120 | 423.65 | 211 | 524 |
ET_1 | 31899 | 13629173 | 427.26 | 211 | 432 |
ET_2 | 48727 | 20886268 | 428.64 | 211 | 431 |
ET_3 | 36722 | 15739755 | 428.62 | 319 | 430 |
注: Con为PBS注射对照组; ET为Edwardsiella tarda YT1胁迫组 |
图1 Edwardsiella tarda YT1侵染前后海马肠道菌群16S rDNA测序分析a. OTU统计; b. 基于OTUs绘制的稀释曲线。Con为PBS注射对照组; ET为E. tarda YT1胁迫组 Fig. 1 Basic analysis of 16S rDNA sequencing of intestinal microbiota during Edwardsiella tarda YT1 infection of Hippocampus erectus. (a) OTU statistics; (b) Rarefaction curves of OTUs of intestinal microbiota of sampled seahorses |
图2 Edwardsiella tarda YT1侵染对海马肠道菌群组成结构的影响a. OUT水平Venn图; b. 肠道菌群的PCoA加权分析。Con为PBS注射对照组; ET为E. tarda YT1胁迫组 Fig. 2 Effect of Edwardsiella tarda YT1 infection on composition and structure of intestinal microbiota of lined seahorse. (a) The diagram of Venn at OUT level; (b) PCoA of weighted UniFrac distance matrices of intestinal microbiota |
图4 Edwardsiella tarda YT1侵染对海马肠道菌群(属水平)相对丰度的影响内、外圈分别显示肠道菌群在属水平的相对丰度与名称。Con为PBS注射对照组; ET为E. tarda YT1胁迫组 Fig. 4 Comparison of intestinal microbiota between healthy and diseased seahorses at genus level (relative abundance > 1%) by circular representation. The inner and outer circular diagrams show the relative abundance of intestinal microbiota at genus level and name, respectively |
图5 Edwardsiella tarda YT1侵染对肠道中优势菌群相对丰度的影响a. 基于线性判别分析效应(LEfSe)绘制的海马肠道微生物群落的物种群落结构图, 图中字母指代菌属见图b。不同颜色节点表示在对应组别中显著富集, 且对组间差异存在显著影响的微生物类群; 淡黄色节点表示在不同分组中均无显著差异或对组间差异无显著影响的微生物类群。节点大小显示了物种的丰度; b. 差异明显的属的定量分析。*表示p<0.05, **表示p<0.01。Con为PBS注射对照组; ET为E. tarda YT1胁迫组 Fig. 5 Comparison of dominant intestinal microbiota between healthy and diseased seahorses. (a) Species community structure diagram of gut microbiomes of the seahorse by linear discriminant analysis effect size (LEfSe); (b) Quantitative analysis of genus (* p<0.05, ** p<0.01). The node’s size displays the abundance of the species |
图6 Edwardsiella tarda YT1侵染对海马肠道菌群功能的影响Con为PBS注射对照组; ET为E. tarda YT1胁迫组 Fig. 6 Functional differences of intestinal microbiota during Edwardsiella tarda YT1-induced enteritis in lined seahorses |
图7 病原侵染过程中海马肠道优势菌属与功能的相关性分析红色代表优势菌属与功能呈正相关, 蓝色代表负相关。*表示p<0.05, **表示p<0.01, ***表示p<0.001。图上方的聚类分析表示肠道优势菌属共分为两大支, 其中Edwardsiella为一支, 其他优势属为一支 Fig. 7 Correlation between relative abundance of dominant genera and functions of intestinal microbiota during Edwardsiella tarda YT1-induced enteritis in lined seahorses (* p<0.05, ** p<0.01, *** p<0.001) |
表2 迟钝爱德华氏菌的侵染对海马肠道菌群α多样性的影响Tab. 2 Effects of Edwardsiella tarda YT1 infection on α diversity of intestinal microbiota of lined seahorses |
名 称 | Con | ET | p值 |
---|---|---|---|
Shannon指数 | 2.59±0.65a | 0.89±0.53b | 0.02 |
Simpson指数 | 0.19±0.06b | 0.68±0.28a | 0.04 |
ACE指数 | 449.82±31.96 | 362.46±232.13 | 0.55 |
Chao指数 | 439.46±41.06 | 326.82±245.5 | 0.47 |
物种覆盖度 | 0.99 | 0.99 | 0.39 |
注: Con为PBS注射对照组; ET为E. tarda YT1胁迫组。变量值表示为“平均值±标准误”, 同列上标字母相同表示数据间差异不显著(p>0.05) |
[1] |
邓钢, 吕军仪, 林强, 2005. 大海马育苗池水华发生期间细菌动态及相关理化参数[J]. 中国水产科学, 12(4): 477-482.
|
[2] |
李焕宇, 付婷婷, 张云, 等, 2017. 5种方法提取真菌基因组DNA作为PCR模板效果的比较[J]. 中国农学通报, 33(16): 28-35.
|
[3] |
刘国信, 茹贺军, 2006. 海马的人工养殖技术[J]. 水产科技情报, 33(6): 254-256.
|
[4] |
吕军仪, 吴金英, 杨大伟, 等, 2001. 大海马在人工养殖条件下的生长速率[J]. 中国水产科学, 8(1): 59-63.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
/
〈 | 〉 |