Marine geophysics

Layout design of ray tracing method on ocean bottom seismic survey for natural gas hydrate

Expand
  • 1. Guangzhou Marine Geological Survey Bureau, Ministry of Land & Resources, Guangzhou 510760, China; 2. School of Mathematics, Central South University, Changsha 410012, China
伍忠良(1967—), 男, 湖南省安乡县人, 高级工程师, 从事海洋地质地球物理勘察研究。E-mail: wzllzw1997@21cn.com

Received date: 2010-03-18

  Revised date: 2010-06-22

  Online published: 2011-03-16

Supported by

国家“863”计划重大项目((2006AA09A202, 2009AA09A201)

Abstract

Ray tracing method of basing on the subsurface geology model is very important for defining some parameters during marine seismic exploration. The signal reflected from underground interface can be directly viewed when different emission locations are chosen. Thus the effect of different seismic survey geometry on seismic data acquisition can be under-stood. It is also very significant for using multi-waves both to reveal the internal velocity structure of gas hydrates ores and enhance the resolution of gas hydrates bearing formations. By analyzing the application of ocean bottom seismometers (OBS) on the gas hydrate exploration abroad, the method of ray tracing was introduced on the layout design of OBS in this paper; PS wave was recorded in the sea test, which gives satisfied application result.

Cite this article

WU Zhong-liang,WU Ren-tun . Layout design of ray tracing method on ocean bottom seismic survey for natural gas hydrate[J]. Journal of Tropical Oceanography, 2011 , 30(1) : 64 -69 . DOI: 10.11978/j.issn.1009-5470.2011.01.064

References

[1]       SAMBRIDGE M S, KENNETT B L N. Boundary value ray tracing in a heterogeneous medium: a simple and versatile algorithm [J]. Geophysics, 1990, 101: 157-168.

[2]       PEREYRAET V, LEE W H K, KELLER H B. Solving two-point seismic ray-tracing problems in heterogeneous medium, Part 1, a general adaptive finite difference method[J]. Bull Seism Soc Amer, 1980, 70: 79-9.

[3]       VIDALE J. Finite-difference calculation of traveltime in three dimensions[J]. Geophysics, 1990, 55: 521-52.

[4]       VOLKER A W F. Analysis and optimization of 3D seismic acquisition geometries by focal beams[C]//Expanded Abstracts of 70th SEG Mtg, Calgary, Canada: American Society of Exploration Geophysicists, 2000. http://www. 3dsymsam. nl/doku.php?id=publications:publications.

[5]       狄帮让, 王长春, 顾培成, . 三维观测系统优化设计的双聚焦方法[J]. 石油地球物理勘探, 2003, 38(5): 463-471.

[6]       张光学, 黄有样, 陈邦彦. 海域天然气水合物地震学[M].北京: 海洋出版社, 2003: 27-36.

[7]       HYNDMAN R D, SPENCE G D. A seismic study of methane hydrate marine bottom simulating reflectors[J]. Journal of Geophysical Research, 1992, 97(B5): 6683-6698.

[8]       雷怀彦, 郑艳红, 吴保祥. 天然气水合物勘探方法—BSR适用性探析[J]. 海洋石油, 2002, 114: 1-8.

[9]       LEE M W, HUTCHINSON D R, AGENA W F, et al. Seismic character of gas hydrates on the southeastern U.S. continental margin[J]. Marine Geophysical Researches, 1993, 16: 163-184.

[10]    SUESS E, TORRES M E, BOHRMAN G, et al. Sea floor methane hydrate at hydrate Ridge, Cascadia Margin[M]//PAUL C K, DILLON W P. Natural Gas Hydrates: Occurrence, Distribution, and Detcetion. Washington, D C: American Geophysical Union, 2001: 87-98.

[11]    HORNBACH M J, HOLBROOK W S,GORMAN A R, et al. Direct seismic detection of methane hydrate on the Blake Ridge[J]. Geophysics, 2003, 68(1): 92-100.

[12]    VANNESTE M, BATIST M DE, GOLMSHTOK A, et al. Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia[J]. Marine Geology, 2001, 172: 1-21.

[13]    JOHNSTON R C, REED D H, DESLER J F. Special Report on marine seismic energy source standards[J]. Geophysics, 1998, 53(4): 566-575.

[14]    POSEWANG J, MIENERT J. High-resolution seismic studies of gas hydrates west of Svalbard[J]. Geo-Marine Letters, 1999, 19: 150-156.

[15]    张明. 天然气水合物BSR的识别与地震勘探频率[J]. 海洋学报, 2004, 26(4): 80-88.

[16]    陆敬安. 海洋地震勘探中地震波、鬼波综合效应分析与应用[J]. 海洋技术, 2006, 25(4): 76-78.

[17]    ANDREAS C, JOHN W P. 陆上三维地震勘探的设计与施工[M]. 俞寿朋, . 石油地球物理勘探局, 1996: 17-64.

[18]    CORDSEN A. Narrow-versus wide-azimuth land 3D seismic surveys[J]. The Leading Edge, 2002, 21(8): 764-770.

[19]    NOUZÉ H, LAFOY Y, GÉLI L, et al. First results of a high resolution seismic study of a bottom simulating reflector in the fairway basin, offshore new caledonia[C]//Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway: Norway-ICGH5-Organising-Committee, 2005. http:// d.wanfangdata.com.cn/periodical _dzkjqb20060- 4 006. aspx

[20]    ACCAINO F, TINIVELLA U.Gas Hydrates and active fluid outflow offshore the Shetland margin [C]//Proceedings of the Fifth International Conference on Gas HydratesTrondheim, Norway: Norway-ICGH5-Organising- Committee, 2005.  http://www.gas-hydrate.org.cn/ symposium/symp_21_1.pdf.

[21]    HAACKE R R, WESTBROOK G K, PEACOCK S, et al. Seismic anisotropy from a marine gas hydrate system west of Svalbard[C]//Proceedings of the Fifth International Conference on Gas Hydrates. Trondheim, Norway: Norway- ICGH5-Organising-Committee, 2005 http://www. rhul.ac.uk/ Earth-Sciences/For-Staff/staff_refs.asp?title=Dr&firstname=Ross&familyname=Haacke&YearFrom=1970&st=NOT_PhD&YearTo=2014&StaffID=40&offset=8.

[22]    ROSSI G, MADRUSSANI G, DAVIDE G, et al. Velocity and attenuation 3d tomography for gashydrates studies: the NW offshore Svalbard case[J]. Geophysical Prospecting, 2007, 55(5): 655-669.

[23]    WESTBROOK1G K, BUENZ S, CAMERLENGHI A., et al. Measurement of P- AND S-wave velocity, and the estimation of hydrate concentration at sites in the continental margin of Svalbard and the storegga region of Norway[C]//Proceedings of the Fifth International Conference on Gas HydratesTrondheim, Norway: Norway-ICGH5- Organising-Committee, 2005. http://www. gas-hydrate.org. cn/symposium/symp_21_1.pdf.

[24]    BOURIAK S, VANNESTE M. AND SAOUTKINE A. Inferred gas hydrates and clay diapers near the Storegga Slide on the southern edge of the Voring Plateau, offshore Norway[J]. Marine Geology, 1999, 163 (1/4): 125-148.

Outlines

/