Metabolic states of the Taiwan Strait and the northern South China Sea in summer 2012

  • WANG Na ,
  • LIN Wei ,
  • CHEN Bing-zhang ,
  • HUANG Bang-qin
Expand
  • Fujian Provincial Key Laboratory for Coastal Ecology and Environment Studies and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China

Received date: 2013-05-29

  Revised date: 2014-01-07

  Online published: 2014-08-11

Abstract

We investigated the metabolic states of plankton communities in the Taiwan Strait and the northern South China Sea by measuring gross primary productivity (GPP), community respiration (CR) and bacterial production (BP) at 16 stations in these areas. GPP averaged 106.6 mmol O2 m-2·d-1 with a standard error of 7.51 mmol O2 m-2·d-1. CR averaged 131.1 mmol O2 m-2·d-1 with a standard error of 5.95 mmol O2 m-2·d-1. Net community productivity varied from -179.0 to 377.6 mmol O2 m-2·d-1with a median value of -40.4 mmol O2 m-2·d-1. Our results showed that the area affected by Qiongdong upwelling was autotrophic. In the areas affected by the Pearl River discharge, the plankton community was also autotrophic. By contrast, other areas including the Taiwan Strait nearshore waters and the South China Sea open waters were heterotrophic. Therefore, community respiration was not entirely determined by the local primary productivity in the study areas. Our results suggest that the spatial transport of organic carbon plays an important role in determining the metabolic state of the plankton community.

Cite this article

WANG Na , LIN Wei , CHEN Bing-zhang , HUANG Bang-qin . Metabolic states of the Taiwan Strait and the northern South China Sea in summer 2012[J]. Journal of Tropical Oceanography, 2014 , 33(4) : 61 -68 . DOI: 10.11978/j.issn.1009-5470.2014.04.008

References

1 台湾海峡南部浮游植物类群组成及其对上升流的响应研究[D]. 厦门: 厦门大学: 24.
2 APPLE J K, DEL GIORGIOP A, KEMPW M. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuar [J]. Aquat Micro Ecol, 43(3): 243-254.
3 ARANGUREN-GASSIS M, SERRT P, FERNÁNDEZ E, et al. 2012. Balanced plankton net community metabolism in the oligotrophic North Atlantic subtropical gyre from Lagrangian observations[J]. Deep Sea Res Ⅰ, 68: 116-122.
4 ARÍSTEGUI J, HARRISON W G, 2002. Decoupling of primary production and community respiration in the ocean: implications for regional carbon studies[J]. Aquat Micro Ecol, 29: 199-209.
5 BJORNSEN P K, KUPARINEN J. 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean[J]. Mar Ecol Prog Ser, 71: 185-194.
6 CAI Y, NING X, LIU CHENG-GANG, et al. 2007. Distribution pattern of photosynthetic picoplankton and heterotrophic bacteria in the Northern South China Sea[J]. Plankton Res, 49 (3): 282-298.
7 DEL GIORGIO P A, COLE J J, CIMBLERIS A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems [J]. Nature, 385: 148-151.
8 DUARTE C M, AGUSTI S. 1998. The CO 2 balance of unproductive aquatic ecosystems[J]. Science, 281: 234-236.
9 DUARTE C M, PRAIRIE Y T. 2005. Prevalence of heterotrophy and atmospheric CO 2 emissions from aquatic Ecosystems[J]. Ecosystems 8: 862-870.
10 DUARTE C M, REGAUDIE-DE-GIOUX A. 2009. Thresholds of gross primary production for the metabolic balance of marine planktonic communities[J]. Limnol Oceanogr, 54(3): 1015-1022.
11 DUARTE C M, REGAUDIE-DE-GIOUX A, ARRIETA J M, et al. 2013. The oligotrophic ocean is heterotrophic[J]. Annu Rev Mar Sci, 5: 551-569.
12 DUCKLOW H W, DICKSON M L, KIRCHMAN D L, et al. 2000. Constraining bacterial production, conversion efficiency and respiration in the Ross Sea, Antarxtia, January-February, 1997[J]. Deep Sea Res Ⅱ, 47: 3227-3247.
13 FURUYA K, HAYASHI M, YABUSHITA Y. 1998. HPLC determination of phytoplankton pigments using N, N-dime-thy-lfol-mamide [J]. Oceanogr, 54: 199-203.
14 HOPPE H G, BREITHAUPT P, WALTHER K, et al. 2008. Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom: A mesocosm study[J]. Aquat Microb Ecol, 51(2): 105-115. doi:10.3354/ame01198.
15 KIRCHMAN D L. 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria[M] // KEMP P F, SHERR B F, SHERR E B, et al. Hand book of methods in aquatic microbial ecology. Boca Raton: Lewis Publishers: 509-512.
16 KRITZBERG E S, DUARTE C M, WASSMANNP. 2010. Changes in Arctic marine bacterial carbon metabolism in response to increasing temperature [J]. Polar Biol, 33: 1673-1682. doi:10.1007/s00300-010-0799-7.
17 LI W K W, HARRISON W G, HEADE J H. 2006. Coherent sign switching in multiyear trends of microbial plankton[J]. Science, 311: 1157-1160.
18 LÓPEZ-URRUTIA Á, MORÁN X A G. 2007. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling [J]. Ecology, 88(4): 817-822.
19 MARAÑÓN E, HOLLIGAN P M. 1999. Photosynthetic parameters of phytoplankton from 50°N to 50°S in the Atlantic Ocean[J]. Mar Ecol Prog Ser,176: 191-203.
20 MARIE D, PARTENSKY F, JACQUET S, et al. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green Ⅰ [J]. Appl Environ Microbiol, 63: 186-193.
21 OUDOT G, GERARD R, MORIN P. 1988. Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system [J]. Limnol Oceanogr, 33 (1): 146-150.
22 RIVKIN R B, LEGENDRE L. 2001. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration [J]. Science, 291(5512): 2398-2400. doi:10.1126/science.291. 5512.2398.
23 SERRET P, FERNÁNDEZ E, SOSTRES J A, et al. 1999. Seasonal compensation of microbial production in a temperate sea [J]. Mar Ecol Prog Ser,187: 43-57.
24 SERRET P, FERNÁNDEZ E, ROBINSON C, et al. 2006. Local production does not control the balance between plankton photosynthesis and respiration in the open Atlantic Ocean[J]. Deep Sea Res Ⅱ 53: 1611-1628.
25 SHERR E B, SHERR B F. 1996. Temporal offset in oceanic production and respiration processed implied by seasonal changes in atmospheric oxygen: the role of heterotrophic microbes[J]. Aquat Microb Ecol 11: 91-100.
26 VAQUER-SUNYER R, DUARTE C M, WASSMANN P, et al. 2010. Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector[J]. Polar Biol, 33: 1661-1671.
27 VOSJAN J H, OLANCZUKNEYMAN K M. 1991. Influence of temperature on respiratory ETS-Activity of microorganisms from Admiralty Bay, King George Island, Antarctica [J]. Neth J Sea Res, 28(3): 221-225.
28 WILLIAMS P J L B. 1998. The balance of plankton respiration and photosynthesis in the open oceans[J]. Nature, 394: 55-57.
29 WILLIAMS P J L B, MORRIS P J, KARL D M. 2004. Net community production and metabolic balance at the oligotrophic ocean site, station ALOHA[J]. Deep Sea Res Ⅰ 51: 1563-1578.
30 WILLIAMS P J L B, QUAY P D, WESTBERRY T K, et al. 2013. The Oligotrophic Ocean is autotrophic [J]. Annu Rev Mar Sci, 5: 16.1-16.15.
31 WONG G T F, KU T L, MULHOLLAND M, et al. 2007. The South East Asian time-series study (SEATS) and the biogeochemistry of the South China Sea—An overview[J]. Deep Sea Res, Part Ⅱ—Topical Studies in Oceanography, 54: 1434-1447.
32 YAGER P L, DEMING J W. 1999. Pelagic microbial activity in an arctic polynya: testing for temperature and substrate interactions using a kinetic approach [J]. Limnol Oceanogr, 44(8): 1882-1893.
33 YUAN X C, YIN K D, HARRISON P J, et al. 2010. Bacterial production and respiration in sub-tropical Hong Kong waters: influence of the Pearl River discharge and sewage impacts [J]. Aquat Microb Ecol, 58: 167-179.
34 YUAN X C, YIN K D, HARRISON P J, et al. 2011a.Variations in apparent oxygen utilization and effects of P addition on bacterial respiration in subtropical Hong Kong waters [J]. Estuar Coast, 34: 536-543.
35 YUAN X C, YIN K, CAI W J, et al. 2011b. In?uence of seasonal monsoons on net community production and CO 2 in subtropical Hong Kong coastal waters[J]. Biogeosciences, 8: 289-300.

Outlines

/