Orginal Article

Study on the macrozoobenthic community structure in intertidal zone of Fangchenghe Estuary of Guangxi, China

  • LAI Tinghe , 1, 2 ,
  • HE Binyuan , 1, 2 ,
  • HUANG Zhongjian 2 ,
  • TANG Qiao 3 ,
  • QIN Luyan 2 ,
  • ZHU Ting 2 ,
  • MO Zhenni 2 ,
  • LIU Li 2 ,
  • ZHONG Yunxu 4
Expand
  • 1. Qinzhou University, Qinzhou 535011, China
  • 2. Guangxi Academy of Oceanography, Nanning 530022, China
  • 3. Guangxi Beilun Estuary National Reserve, Fangchenggang 538100, China
  • 4. Guangxi Mangrove Research Center, Beihai 536000, China
Corresponding author: HE Binyuan. Email:

Received date: 2018-05-31

  Request revised date: 2018-08-29

  Online published: 2019-01-16

Supported by

Science and Technology Project of State Oceanic Administration (YLFCJ20164006-F)

Science and Technology Project of Guangxi Oceanic Administration (GXHYJ100)

National Key Research and Development Program of China (2017YFC0506100)

Copyright

热带海洋学报编辑部

Abstract

Based on the survey in May, August and November 2016 and February 2017, the effects of natural and anthropogenic factors on macrozoobenthic community structure in the intertidal zone of Fangchenghe Estuary of Guangxi, China were studied. A total of 252 species belonging to 10 phyla of intertidal macrozoobenthos were collected, among which Mollusca, Arthropoda and Annelida were richer in species abundance. Cerithidea cingulata, Ruditapes philippinarum, Mictyris longicarpus, Batillaria zonalis, Cyclina sinensis, Laternula nanhaiensis, Meretrix meretrix, and Gelolna coaxans were ranked as the top eight dominant species in this study area through the whole year. The annual average density and biomass of the study area were 203 ind•m-2 and 276.58 g•m-2, respectively, in which Mollusca occupied 69.58% and 83.73% to the total, respectively. ANOVA showed that salinity and sediment type factors had significant influences (p<0.05 and less) on macrozoobenthos density, biomass, species diversity H′, Richness d, Evenness J, and quadrat-based species abundance, while season and tidal zone factors had very small influences (p>0.05) on them. Salinity had larger influences on density and biomass than sediment type did, while sediment type had larger influences on species diversity H′, Richness d, Evenness J, and quadrat-based species abundance than salinity did. Both clustering analysis and multidimensional scaling analysis obtained the same results that the 21 sampling stations could be divided into three groups, basically owing to the effects from salinity and sediment type. The status of diversity index H′ showed that in general the intertidal macrozoobenthic communities were under middle-level fluctuation. Comprehensively, three factors, i.e., salinity, sediment type and anthropogenic fluctuation, played combined roles on the spatial distribution pattern of macrozoobenthic communities in the intertidal zone of Fangchenghe Estuary.

Cite this article

LAI Tinghe , HE Binyuan , HUANG Zhongjian , TANG Qiao , QIN Luyan , ZHU Ting , MO Zhenni , LIU Li , ZHONG Yunxu . Study on the macrozoobenthic community structure in intertidal zone of Fangchenghe Estuary of Guangxi, China[J]. Journal of Tropical Oceanography, 2019 , 38(2) : 67 -77 . DOI: 10.11978/2018034

河口海湾湿地是处于陆地与海洋之间的生态交错带, 是地球上生物多样性最丰富、生态服务价值最高的自然生态系统之一, 在保护生物多样性及栖息地、防洪减灾、净化污染、抵御海侵和调节气候等方面具有重要的生态作用(陆健健, 2003)。河口湾湿地系统中生物类群丰富多样, 其中潮间带大型底栖动物是湿地食物网中承上启下的关键类群, 在近岸海洋生态系统物质循环和能量流动中起着重要作用, 同时可发掘出良好的环境指示物种(Gesteira et al, 2000; Sarker et al, 2016; Arbi et al, 2017), 因此吸引了很多学者的关注。防城河口湾(108°17′30″—108°22′00″E, 21°32′30″—21°43′00″N)位于防城港市的江山半岛和渔澫岛之间, 海域面积4983hm2, 其中潮间带滩涂面积1647hm2。湾内现存红树林184.53hm2, 主要群落类型有桐花树Aegiceras corniculatum群落、白骨壤Avicennia marina群落及秋茄Kandelia obovata群落。与1990年相比, 围填海使防城河口的湾口宽度减少了20%, 湾内湿地面积减少了36.8%, 32.6%的原生红树林已消失; 同时大量污水经河流倾泻到河口和近岸地区, 致使潮间带底质重金属污染状况严重(黎清华 等, 2014)。防城河口湾在潮间带动物群落生态调查研究方面不系统不全面、水平落后, 如: 1984年广西首次海岸带和海涂资源综合调查在该湾仅设置1个潮间带调查断面, 后因港口建设填埋了整个断面, 此后近20年未见有关防城河口湾潮间带动物群落方面研究报道; 2005年后为填海造地海域使用论证的调查报告渐多, 但均调查范围窄、断面站位少、调查频次低, 同时填海压缩甚至占据了潮间带, 难以跟踪研究趋势性变化。因此, 本文在该河口湾开展4个季度的调查, 目的是探索自然和人为因素对潮间带大型底栖动物群落结构的影响机制, 把握海洋生态环境状况变化趋势, 为防城河口湾管理保护及生态修复提供科学依据。

1 材料与方法

1.1 调查站位设置与采样

在防城河口湾潮间带滩涂共设置7条调查断面(对应编号S1至S7, 断面示意见图1), 每条断面在高、低潮带各设1~2个站位, 中潮带布设3个站位。各潮带的生境因子见表1, 21处采样潮带的底质类型有8处为沙泥质裸滩, 5处为红树林滩涂, 5处为沙质裸滩, 3处为淤泥质裸滩。分别于2016年5月、8月、11月和2017年2月的当地大潮期, 开展潮间带大型底栖动物定量定性采样。在每个站位采集4个定量样方, 样方大小为25cm×25cm, 采样深度30cm。挖取样方框范围内的沉积物放入二层网目均为1mm的套筛内反复冲洗, 拣出滞留网上肉眼可见动物, 并将残渣带回实验室在显微镜下挑出所有动物。所得样品用5%甲醛固定5d后进行种类鉴定、计数和称重(精确度为0.001g)。每条断面的站位密度和生物量按其所在的潮带归类, 取潮带平均值, 作为各潮带的栖息密度(个•m-2)和生物量(g•m-2)。定性取样在等高线内进行带状取样。野外调查时使用YSI 650多参数水质仪测定退潮后沉积物渗出水及涨潮时上覆水的pH和盐度, 结果见表1
Fig. 1 Sampling stations for the macrozoobenthic community in the intertidal zone of Fangchenghe Estuary of Guangxi, China

图1 防城河口湾潮间带大型底栖动物调查断面示意图

Tab. 1 Salinity, pH and habitat type at sampling stations for the intertidal macrozoobenthic community in Fangchenghe Estuary

表1 防城河口湾潮间带大型底栖动物调查区域的盐度、pH和生境类型

断面 渗出水盐度/‰ 上覆水盐度/‰ 渗出水pH 上覆水pH 生境特点
S1 17.6~27.2 3.9~27.0 7.1~7.4 7.2~8.1 高、中潮带为桐花树林, 低潮带为沙泥质裸滩
S2 21.0~27.8 6.5~28.1 7.1~7.4 7.3~8.2 高潮带为秋茄林, 中潮带为白骨壤林, 低潮带为沙泥质裸滩
S3 23.4~28.8 11.5~29.3 7.2~7.6 7.4~8.2 3个潮带均为淤泥质裸滩
S4 22.0~28.3 10.6~29.0 7.2~7.6 7.5~8.2 高、中潮带为人工沙质裸滩, 低潮带为沙泥质裸滩
S5 27.0~31.0 17.6~30.2 7.4~7.7 7.5~8.3 3个潮带均为沙泥质的滩涂贝类养殖场
S6 27.4~32.0 19.3~30.8 7.3~7.8 7.8~8.5 高潮带为白骨壤林, 中、低潮带为沙泥质的滩涂贝类养殖场
S7 28.0~33.0 27.0~31.8 7.6~7.9 7.8~8.6 3个潮带均为天然沙质裸滩

1.2 数据处理

1.2.1 群落多样性和相似性指数计算
群落多样性指数和相似性指数的算式如下:
Shannon-Weaver多样性指数(H′):
${H}'=-\sum\limits_{i=1}^{s}{{{p}_{i}}{{\log }_{2}}{{p}_{i}}}$
Margalef丰富度指数(d ):
$d=(S-1)/{{\log }_{2}}N$
Pielou均匀度指数(J):
$J={H}'/{{\log }_{2}}$
式中: N为某调查潮带的所有物种的个体数之和; S为该潮带定量样方鉴定出的物种数目; pi为某潮带中第i个种的个体数占该潮带总个数的比例。
物种相似性指数Si (单位: %):
${{S}_{i}}=c/(a+b-c)\times 100%$
式中: ab分别为某两个断面的物种数; c为两个断面共有的物种数。
1.2.2 群落相对重要值计算
相对重要值V (单位: %)计算采用如下算式:
$V=100\times {{n}_{i}}\times {{w}_{i}}\div \sum\limits_{i=1}^{s}{({{n}_{i}}\times {{w}_{i}})}$
式中: ni为第i种密度(单位: 个•m-2); wi为第i种生物量(单位: g•m-2)。设定V≥1%的种群为优势种群。
1.2.3 数据分析
采用IBM SPSS Statistics 23.0软件对不同生境潮间带大型底栖动物群落的密度、生物量和群落指数进行方差分析, 将4个季度各21处潮带的密度数据作4次方根转换, 进行系统聚类分析和非线性多维尺度分析。

2 结果与分析

2.1 群落种类组成

4个季度共采集到潮间带大型底栖动物10门14纲252种, 以软体动物门、节肢动物门和环节动物门为主。其中, 软体动物门有2纲124种, 占总种数的49.2%, 双壳纲和腹足纲分别有82种和42种。节肢动物门有2纲65种, 占25.8%, 甲壳纲和肢口纲分别有63种和2种。环节动物门有1纲40种, 占15.9%, 均属多毛纲。脊索动物门有1纲14种, 占5.6%, 均属硬骨鱼纲。其他6门有9种, 包括棘皮动物门3种(含海胆纲1种、海参纲2种), 星虫动物门2种(含革囊星虫纲和方格星虫纲各1种), 及扁形动物门涡虫纲、纽形动物门无针纲、尾索动物门有尾纲和腕足动物门无关节纲各1种。
各断面采集到的动物种数差异较大, S1获100种, S2获82种, S3获64种, S4获48种, S5获103种, S6获82种, S7获108种。位于湾口的S7种数最多, 位于湾中上部的S4最少。断面S7与其他断面之间的相似度低, 尤其是S7与S3之间相似性指数仅10.3%。S7位于湾口为沙质滩涂, S3位于湾上部为淤泥质滩涂, 底质类型和盐度差异均较大。S1与S2之间的相似性指数最大, 达42.2%, S5与S6之间次之, 为35.0%, 空间相邻且底质类型近似的断面间相似程度较大。
虽然各断面种数差异较大, 但各类群种数占比的大小顺序却一致, 均表现为: 软体动物门>节肢动物门>环节动物门>其他门类。软体动物门、节肢动物门和环节动物门是防城河口湾潮间带动物群落的优势类群。自湾顶至湾口, 主要优势种群呈现出由适应河口低盐种群向适应湾口高盐种群逐渐过渡的趋势: 在湾顶, 以斜肋齿蜷Sermyla riqueti、中国绿螂Glauconme chinensis、弓绿螂Glauconme cerea和红树蚬Gelolna coaxans等河口种占优势, 在外湾则多见古明志圆蛤Cycladicama cumingii、四角蛤蜊Mactra veneriformis、突畸心蛤Cryptonema producta、高蛤蜊Mactra alta和紫藤斧蛤Chion semigranosus等适应高盐种群。

2.2 群落优势种

全年防城河口湾7个断面潮间带动物群落中相对重要值V≥1%的优势种有44种, 包括软体类28种, 甲壳类10种, 多毛类和其他类群各3种(表2)。软体类在5个断面、甲壳类在2个断面为最大优势类群, 软体类的优势地位显著。除了S3和S7外, 其他5个断面最大优势种的相对重要值均超过50%, 多样化程度相对较弱。7个断面中, S1、S2、S6的最大优势种均为珠带拟蟹守螺Cerithidea cingulata, S3的是莱氏异额蟹Anomalifrons lightana, S4的是长腕和尚蟹Mictyris longicarpus, S5的是菲律宾蛤仔Ruditapes philippinarum, S7的是古明志圆蛤。珠带拟蟹守螺在红树林和沙泥质滩涂生境优势突出, 在S1、S2和S6的相对重要值分别达到54.86%、77.95%和66.17%, 但在盐度较高且沙质的湾口S7则几近消失。全年统计整个调查区域的8个优势种及其重要值分别为: 珠带拟蟹守螺(52.28%)、菲律宾蛤仔(19.15%)、长腕和尚蟹(7.29%)、纵带滩栖螺Batillaria zonalis (6.89%)、青蛤Cyclina sinensis (3.74%)、南海鸭嘴蛤Laternula nanhaiensis (2.61%)、文蛤Meretrix meretrix (2.44%)和红树蚬Gelolna coaxans (1.04%)。
Tab. 2 Density and biomass of macrozoobenthic communities in the intertidal zone of Fangchenghe Estuary and the relative important values V (units: %) of dominant populations

表2 防城河口湾潮间带大型底栖动物群落密度、生物量及优势种群相对重要值

断面 潮带 年均密度/(个•m-2) 年均生物量/(g•m-2) 优势种群及其相对优势度/%
S1 高潮带 244 252.59 CEC 68.88, GEC 14.73, GLA 3.64, GLC 3.60, SER 2.08
中潮带 297 92.97 MIL 70.09, CEC 15.42, SER 6.59, BAL 4.80
低潮带 115 193.25 PHS 57.5, CEC 15.2, LAT 5.5, LAN 4.4, CYS 3.7
全断面 219 179.60 CEC 54.86, MIL 17.15, GEC 7.72, SER 4.59, PHS 3.60
S2 高潮带 151 401.79 CEC 61.29, GEC 32.30, CEM 3.86, ONV 1.17
中潮带 138 226.24 CEC 66.30, MIL 11.95, LAT 11.24, UCV 4.53, GEC 4.21
低潮带 264 295.18 CEC 78.52, LAT 8.72, SER 3.01, UCV 2.16, BAL 2.09
全断面 184 307.74 CEC 77.95, GEC 10.29, LAT 5.14, MIL 1.68, UCV 1.49
S3 高潮带 68 201.29 CYS 64.98, ANL 15.68, MSJ 8.30, CEC 8.22
中潮带 50 146.06 ANL 43.16, TEG 24.02, PHS 13.57, TRS 9.09, PEV 6.01
低潮带 47 119.54 PHS 61.17, ANL 22.67, MSJ 8.54, PLD 2.40, MOP 1.26
全断面 55 155.63 ANL 39.14, PHS 22.77, CYS 19.73, MSJ 7.22, TEG 2.84
S4 高潮带 66 60.33 MIL 85.66, DOW 12.35, MEM 1.74
中潮带 44 63.34 MIL 90.34, DOW 3.88, CYS 2.94, LAT 2.17
低潮带 138 108.82 CEC 37.09, RUP 33.58, MEM 16.38, LAN 4.72, MIL 4.27
全断面 83 77.50 MIL 69.42, DOW 8.11, CEC 7.02, MEM 6.97, RUP 6.36
S5 高潮带 256 577.28 CYS 65.01, CEC 24.26, BAZ 3.79, MEM 3.11, UCV 1.30
中潮带 229 380.61 BAZ 37.11, CEC 34.30, BAC 9.95, CYS 7.41, SIN 7.29
低潮带 560 1080.09 RUP 91.78, LAN 7.04
全断面 348 679.33 RUP 75.80, CYS 5.98, LAN 5.90, CEC 4.96, BAZ 2.80
S6 高潮带 522 334.98 CEC 75.82, BAZ 19.73, MIL 3.16
中潮带 325 380.64 MOR 38.73, BAZ 23.90, CEC 15.17, MIL 12.23, MEM 6.36
低潮带 242 277.66 CEC 76.28, BAZ 21.56
全断面 363 331.09 CEC 66.17, BAZ 24.65, MIL 3.73, MOR 3.26
S7 高潮带 178 181.39 CYC 60.96, MAV 24.72, MIL 8.27, MAA 5.86
中潮带 85 87.39 CYC 41.93, MAA 41.29, CRP 8.81, DOW 5.91, MAV 1.05
低潮带 252 346.68 CRP 32.88, CHS 22.92, MEM 22.80, MOR 8.16, PAV 7.86
全断面 172 205.15 CYC 41.95, MAV 17.81, CRP 11.14, MAA 9.76, CHS 4.70

注: ANL=莱氏异额蟹Anomalifrons lightana, BAC=古氏滩栖螺Batillaria cumingi, BAL=潮间藤壶Balanus littoralis, BAZ=纵带滩栖螺Batillaria zonalis, CEC=珠带拟蟹守螺Cerithidea cingulata, CEM=小翼拟蟹守螺Cerithidea microptera, CHS =紫藤斧蛤Chion semigranosus, CRP=突畸心蛤Cryptonema producta, CYC=古明志圆蛤Cycladicama cumingii, CYS =青蛤 Cyclina sinensis, DIP=拟脊活额寄居蟹Diogenes paracristimanus, DOW=韦氏毛带蟹Dotilla wichmanni, FEP=长毛明对虾Fenneropenaeus penicillatus, GEC=红树蚬Gelolna coaxans, GLA=弓绿螂Glauconme cerea, GLA=白色吻沙蚕Glycera alba, GLC=中国绿螂Glauconme chinensis, ILN=宁波泥蟹Ilyoplax ningpoensis, LAN=南海鸭嘴蛤Laternula nanhaiensis, LAT=截形鸭嘴蛤Laternula truncata, LIA=亚氏海豆芽Lingula adamsi, MAA=高蛤蜊Mactra alta, MAV=四角蛤蜊Mactra veneriformis, MEL=长足长方蟹Metaplax longipes, MEM=文蛤Meretrix meretrix, MER=斧文蛤Meretrix lamarckii, MIL=长腕和尚蟹Mictyris longicarpus, MOP=菲律宾偏顶蛤Modiolus philippinarum, MOR=红明樱蛤Moerella rutila, MSJ=日本大眼蟹Macrophthalmus japonicus, NIJ=幼形亮樱蛤Nitidotellina juvenilis, NOL=背蚓虫Notomastus latericeus, ONV=石磺Onchididum verruculatus, PAV=南海毛满月蛤Pallucina vietnamica, PEV=翡翠贻贝Perna viridis, PHS=针骨沙鸡子Phyllophorus spiculatus, PLD=杜氏阔沙蚕Platynereis dumerilii, RUP=菲律宾蛤仔Ruditapes philippinarum, SER=斜肋齿蜷Sermyla riqueti, SIN=裸体方格星虫Sipunculus nudus, TEG=泥蚶Tegillarca granosa, TRS=亚光棱蛤Trapezium sublaevigatum, UCA=弧边招潮Uca arcuata, UCV=凹指招潮Uca vocans

2.3 群落密度与生物量

防城河口湾潮间带的动物群落年平均密度为203个•m-2, 其中软体类占69.58%, 甲壳类占22.38%, 多毛类占5.36%, 其他类群占2.68%。空间分布呈现河口湾中部(S5、S6)较高、南北较低的格局(表2), 密度变化较大, 方差分析表明断面之间差异极显著(F6, 77=7.626, p<0.01)。4类底质类型之间的密度差异极显著(F3, 80=7.572, p<0.01), 分别为: 红树林滩涂(270个•m-2)、沙泥质裸滩(266个•m-2)、沙质裸滩(125个•m-2)、淤泥质裸滩(44个•m-2)。4个季节之间差异不显著(F3, 80=0.028, p>0.05), 高、中、低潮带之间密度差异也不显著(F2, 81=0.928, p>0.05)。盐度与底质类型对密度分布的影响程度相近。盐度、潮带、底质类型和季节4类因素之间, 盐度与底质类型、盐度与潮带有交互作用, 其他因素间均无交互作用。
调查区域的年均生物量为276.58g•m-2, 软体类、甲壳类、其他类群和多毛类分别占83.73%、11.36%、4.36%和0.55%。各断面生物量分布规律与密度大致相似(表2), 断面之间生物量差异极显著(F6, 77=6.346, p<0.01)。底质类型之间生物量差异显著(F3, 80=3.936, p<0.05), 沙泥质裸滩(411.69g•m-2)>红树林滩涂(261.71g•m-2)>淤泥质裸滩(155.63g•m-2)>沙质裸滩(147.83g•m-2)。季节之间、潮带之间的生物量差异均不显著(F3, 80=1.048, F2, 81= 1.560, p>0.05)。盐度对生物量分布的影响程度大于底质类型。4类因素间均无交叉作用。

2.4 群落指数

全年定量采集获得的各潮带平均物种丰度为8.2种; 8~11种者较多, 占41.7%; 16种以上者占3.6% (图2)。底质类型之间的物种丰度差异极显著(F3, 80=22.098, p<0.01); 断面之间物种丰度差异极显著(F6, 77=15.430, p<0.01); 潮带之间、季节之间物种丰度差异均不显著(F2, 81=3.060, F3, 80=0.796, p>0.05)。底质类型对物种丰度分布的影响程度大于盐度。底质类型与潮带、盐度与潮带有交互作用, 其他因素均无交叉作用。
Fig. 2 Indexes of species abundance (a), species diversity H′ (b), Richness d (c), and Evenness J (d) of macrozoobenthic communities seasonally sampled in the intertidal zone of Fangchenghe Estuary. Among the three letters in each legend, the first two letters are the abbreviation of sampling season: Sp = Spring, Su = Summer, Au = Autumn, and Wi = Winter; and the last letter is the abbreviation of tidal zone: H = high tidal zone, M = middle tidal zone and L = low tidal zone

图2 防城河口湾全年各潮带大型底栖动物群落物种丰度(a)、种类多样性指数(b)、丰富度指数(c)、均匀度(d)
图例3个字母中前2个为季节的英文缩写, Sp春季, Su夏季, Au秋季, Wi冬季; 后1个为所在潮带英文缩写, H高潮带, M中潮带, L低潮带

多样性指数H′大于3者仅占总数8.3%, 其中S5有3例, S1至S4各有1例(图2); H′值在2~3者占了50.0%。底质类型之间、断面之间H′值的差异极显著(F3, 80=18.716, F6, 77=8.195, p<0.001), 底质类型的影响程度大于盐度。潮带之间、季节之间的H′值差异均不显著(F2, 81=1.452, F3, 80=0.287, p>0.05)。底质类型与潮带、盐度与潮带有交互作用, 其他因素均无交叉作用。
丰富度指数d值分布较集中在1~2的区间, 占61.9% (图2)。底质类型之间、断面之间d值差异均极显著(F3, 80=21.296, F6, 77=10.654, p<0.01)。潮带之间d值差异显著(F2, 81=3.225, p<0.05)。季节之间d值差异不显著(F3, 80=0.541, p>0.05)。对d值分布影响程度的大小顺序依次为底质类型、盐度和潮带。底质类型与潮带、盐度与潮带有交互作用, 其他因素均无交叉作用。
均匀度指数J值多出现在0.75~1.00区间, 占54.8% (图2)。底质类型之间、断面之间J值差异均显著(F3, 80=4.601, F6, 77=3.991, p<0.05), 底质类型的影响程度大于盐度。潮带之间、季节之间J值差异均不显著(F2, 81=0.095, F3, 80=0.028, p>0.05)。因素间均无交叉作用。
部分群落指数之间存在密切关系, d与物种丰度、dH′的相关系数分别达0.887和0.834, H′与物种丰度、H′与J的相关系数分别达0.644和0.610, 均极显著(p<0.01, n=84)。

2.5 聚类分析与多维尺度分析

聚类图和排序图见图3。聚类图显示按欧氏距离10%可划分为3个群: 第一个群主要包括S3和S4的潮带, 生境为淤泥质滩涂和沙质滩涂类型, 匍匐生活型、底游生活型、凿穴生活型动物种类和数量很低甚至为0, 各潮带年均密度明显较低; 第二个群是河口上游以珠带拟蟹守螺为优势种的群, 密度稍高于第一个群; 第三个群以S5和S6的潮带为主, 生境为异质性程度较高的沙泥质滩涂及红树林, 该群所包含的潮带最多, 年均密度较高。此外还有3个潮带呈较独立星散分布, 包括菲律宾蛤仔(S5L)、珠带拟蟹守螺(S6H)大量繁衍的潮带, 及季节分布格局迥异于其他潮带的S7H。
Fig. 3 The hierarchical cluster dendrogram (a) and 2-dimentional MDS ordinal configuration (b) of macrozoobenthic communities in the intertidal zone of Fangchenghe Estuary. H= high tidal zone, M= middle tidal zone and L= low tidal zone, Three dotted circles in figure b represent three major groups based on the MDS ordinal

图3 防城河口湾潮间带大型底栖动物群落系统聚类(a)及MDS分析图(b)
H为高潮带; M为中潮带; L为低潮带; 图b中虚线圈显示MDS分析划分的3个主要的群

从MDS排序图中不同程度分离的潮带分布可看出, MDS排序结果与群落聚类分析结果基本一致, 进一步印证了聚类分析的结果。

3 讨论

3.1 防城河口潮间带动物群落结构特征

防城河口湾潮间带大型底栖动物群落种类组成以软体动物门、节肢动物门和环节动物门为主体, 这与已报道的广西其他海域类似(何斌源 等, 1998, 2004, 2013; 何祥英 等, 2012; 许铭本 等, 2015)。但本文调查获得10门252种, 远多于广西其他海区的报道, 例如何斌源等(1998)在珍珠湾红树林区设5站位调查获84种, 何斌源等(2004)在钦州湾潮间带设4断面11站位调查获70种, 何祥英等(2012)在北仑河口红树林区设4断面15站位调查获106种, 许铭本等(2015)在竹山红树林区设3断面10站位调查获63种。比较定量样方获得种数, 本文设7断面40 站位调查获157种, 与何斌源等(2013)在廉州湾潮间带设12断面33站位调查获156种接近。可见, 生境多样性、取样站位数、地理位置甚至采样方法等因素, 均可影响我们的区域生物多样性调查结果。
防城河口湾潮间带底栖动物群落中很多为广布种, 部分为河口低盐种。在湾顶常见斜肋齿蜷、中国绿螂、弓绿螂、红树蚬、河蚬、宁波泥蟹、伍氏拟厚蟹Helice wuana等河口低盐种, 且有时形成较大优势; 在湾口则多见古明志圆蛤、四角蛤蜊、突畸心蛤、高蛤蜊和紫藤斧蛤等适应较高盐度的动物。湾顶断面S1与湾口断面S7群落之间共有种仅34种, 均为广布种, 相似性指数仅19.5%, 可见两地动物群落组成结构差异非常大。同时一些种类在河口湾广泛地分布, 如珠带拟蟹守螺、长腕和尚蟹、韦氏毛带蟹等。群落组成在盐度适应生态类型上的变化是河口湾的一种生物特征, 袁兴中等(2002)在长江口潮滩湿地调查获得大型底栖动物68种, 河口低盐种、半咸水种和淡水种共存; 何斌源等(2013)发现随着水体盐度上升, 南流江入海口廉州湾红树林和裸滩的潮间带动物群落优势种出现了由适应低盐环境向适应高盐环境的种类组成变化。
河口多变的环境因子仅适合为数不多的种群大量繁衍, 通常生物群落主要优势种突出。防城河口湾潮间带动物群落中相对重要值≥1%的优势种有珠带拟蟹守螺、菲律宾蛤仔等8种, 仅占调查区域总种数252种的3.2%。通常珠带拟蟹守螺在红树林及其邻近滩涂上优势度非常显著, 该种群聚性强,具有很高的频度、密度和生物量, 重要值达52.28%, 超过其他所有种类之和。重要值次之的菲律宾蛤仔则非常集聚在断面S5低潮带, 春季达856个•m-2和1841.48g•m-2, 分别占该种全年总量的53.4%和86.3%。在其他海区潮间带也常见优势种集聚于少数种群的现象, 例如, 在广西廉州湾潮间带上珠带拟蟹守螺、弧边招潮等少数物的种优势度非常显著(何斌源 等, 2013); 辽宁东营市河口区潮间带动物群落中泥螺Bullacta exarata和文蛤异常高于其他种群(顾炎斌 等, 2013); 阿根廷Bahía Blanca河口沙滩潮间带动物群落中, 豆蟹科Austinixa patagoniensis的优势度达64.09%, 其他任一种均不超过10% (Carcedo et al, 2015); 福建坛南湾潮间带上肋昌螺Umbonium costatum有着很高的密度, 某站高达3600个•m-2 (李国强 等, 2017)。优势种集聚于少数种群往往导致群落多样性指数H′较低, 防城河口湾潮间带动物群落多样性指数H′大于3的潮带数仅占总数8.3%, 绝大部分处在1~3的范围内, 群落结构受到中度扰动。

3.2 防城河口潮间带动物群落结构的影响因素与管理控制

生境相对稳定是维持生物群落结构的关键因素, 然而河口湾是海陆作用最为剧烈、生态结构最为复杂的区域, 同时也是人为干扰最频繁、污染最严重的区域, 而且人为因素影响呈现超过自然因素的趋势, 引起生态质量及生态服务功能逐步衰退。已有研究表明, 潮间带底栖动物群落的组成性质、区域分布及数量特征等与其盐度、底质类型、季节、潮带和相关生物等自然因素(蔡立哲 等, 2001; 袁兴中 等, 2002; Edgar et al, 2002; Chapman et al, 2004; Occhipinti-Ambrogi et al, 2005; Fujii, 2007; Otani et al, 2008; Picanço et al, 2014; Carcedo et al, 2015), 以及疏浚、围填海、排污等人为因素(Belan, 2003; 叶属峰 等, 2004; 金亮 等, 2007; 周进 等, 2012; 张莹 等, 2012; 贺心然 等, 2015; 崔磊 等, 2017)密切相关。
通常多种自然和人为因素共同影响潮间带底栖动物群落种类组成和群落数量指标的空间差异, 同时诸多因素之中有主导因素和次要因素的区别。本文结果表明: 盐度、底质类型、季节和潮带等4种自然因素对防城河口湾潮间带动物群落数量指标造成的影响不一。季节和潮带因素对各个数量指标造成的影响较小, 而盐度和底质类型因素则影响显著至极显著, 后两个因素综合主导了潮间带动物的物种分布格局及群落结构, 盐度对密度和生物量分布的影响尤其突出。由湾顶至湾口, 防城河口湾水体盐度由较低且激烈变动逐渐升高且稳定(表1)。盐度差异大是河口区显著的宏观特征, 可观察到盐度主导河口湾生物群落中的河口种、海洋种和淡水种出现与否及数量多寡。袁兴中等(2002)指出, 大尺度上长江口潮滩湿地底栖动物物种及功能群分布格局主要决定于盐度梯度。厉红梅等(2003)研究发现, 靠近深圳河口的潮间带底栖动物群落与红树林区附近潮间带底栖动物群落结构有明显的差异, 群落结构组成随盐度梯度而呈现连续的变化。何斌源等(2013)报道, 广西南流江口裸滩上底栖动物群落优势种随水体盐度升高而变化, 由穴居生活型蟹类(弧边招潮)占优转向底上生活型软体类(珠带拟蟹守螺)等, 且断面种数与盐度具有正相关关系。
底质类型对防城河口湾潮间带动物群落的种类多样性指数H′、丰富度指数d, 均匀度J和潮带物种丰度等4个群落指数的影响超过了盐度。本文物种丰度并没有出现随盐度升高而增多的现象(图2), 这与长江口(袁兴中 等, 2002)、南流江口(何斌源 等, 2013)、珠江口(张敬怀, 2014)等河口水域不一致。该海湾的物种丰度低值区出现在调查区域中上部的断面S3和S4, 其上、下游区域均出现高值区, 密度和生物量也出现类似的分布格局, 这主要由底质类型因素引起。由于防城河口湾的西航道被养殖堤围阻塞, 长榄岛至横岭一带滩涂(图1中的S3断面及周边)水交换不畅, 加速外源细颗粒物质沉积形成了淤泥质滩涂; 断面S4位于河口湾东岸的人造沙滩, 堆积在高潮带至潮上带的沙粒受冲刷不断向下流失, 造成生境不稳定。聚类分析与MDS分析均表明: 断面S3和S4的潮间带动物群落结构趋向于相似, 尽管它们的底质类型差异很大, 但均为不稳定生境, 容易导致某些功能群数量锐减甚至缺失, 如: 断面S3和S4的匍匐生活型动物(腹足类)生物量占比仅分别为2.4%和6.4%, 而其他断面占比在11.1%~46.2%之间; 底游生活型、凿穴生活型动物数量极少甚至为0。在深圳湾淤泥质滩涂一般多毛类比重显著上升, 密度很高, 但生物量极低(蔡立哲 等, 2001; 厉红梅 等, 2003); 表明底质类型因素作用非常显著。
通过比较和统计分析可了解多个生态因素的综合影响作用。厉红梅等(2004)通过4个季度采样得出结论, 季节和潮带是影响深圳湾底栖动物群落结构组成时空变异的主要因素, 同时也与污染程度差异和距河口的远近等次要因素有关。赵永强等(2009)分析椒江口滩涂大型底栖动物群落格局与多样性, 认为在河口区自然环境因素中盐度、底质结构等变化是影响生物分布的主要环境因子。侯森林等(2011)研究发现, 潮带和湿地植被是影响射阳河口潮间带大型底栖动物群落结构组成的两个重要因素。Picanço等(2014)报道沉积物的细沙组分和有机质含量显著影响葡萄牙Minho河口盐沼潮间带动物群落结构, 而重金属含量的影响不显著。Carcedo等(2015)分析表明阿根廷Bahía Blanca河口沙滩的盐度、温度、波浪周期、波高、粒度等指标与不同的群落指数有显著相关性。李晓静等(2016)认为水温、盐度和总磷含量等环境因子与山东烟台大沽夹河口及邻近海域底栖动物群落的丰度和生物量空间分布特征相关性较大。当然, 本文认为还需开展更深入的工作解决如何分辨多种影响因子的程度与权重问题。
人为扰动引起生境的理化因素和生物因素变化而对底栖生物群落产生影响。叶属峰等(2004)调查发现, 由于长江口经常性疏浚, 该水域底栖生物种数由1978年的153种减少至2002年的19种, 密度和生物量也急剧降低, 引起底栖生态系统结构与功能的改变, 而且通过食物链关系, 导致长江口渔业资源全面衰退。Rehitha等(2017)研究表明维护性疏浚导致印度Cochin河口疏浚区底栖动物群落密度、生物量和多样性指数显著地低, 且Oligochaeta属颤蚓异常丰富, 而双壳类和端足类很少。在污染严重的深圳湾北岸红树林外泥滩上多毛类和寡毛类等耐高有机负荷的种类最多, 年均生物量仅有18.52g•m-2, 但年均密度达到103~104个•m-2水平(金亮 等, 2007)。在福建东北部的三都澳海湾养殖使得污染逐年加重, 呈现富营养化趋势, 潮间带底栖动物年均密度较高, 可达到121.52个•m-2, 但年均生物量仅有7.00g•m-2, 与自然水域差别明显(周进 等, 2012)。张莹等(2012)报道小清河口底栖动物群落的多样性指数H′与铵盐、硝酸盐、铜和汞含量呈负相关, 认为生活污水和工业废水的排放对河口区底栖动物群落产生了负面影响。贺心然等(2015)研究表明江苏灌河口潮间带底栖动物种数、密度、H′等都比邻近海域的低, 认为源自灌河沿岸化工排放的污染物如敌敌畏、有机氯农药、半挥发性有机物、镉、汞、锌和总铬等造成了显著或较大影响。崔磊等(2017)连续调查发现围填海工程不但导致广东淇澳岛附近水域重金属污染及富营养化, 而且造成生物多样性降低及优势种和群落结构的变化, 影响群落稳定性。上述研究所在区域生境条件及关注的环境指标不一样, 其揭示的影响潮间带动物群落的胁迫机制各具区域特殊性, 当然同时也存在普遍性。
如果我们采取有效措施将人为扰动控制在一定程度, 河口湾生物有可能逐渐适应变化后的环境而建立起一个新的生态系统。蔡立哲等(2007)报道在2000年初, 深圳市在落马洲河段两端与深圳河连接处建造了水闸, 截断了污染物进入落马洲河段的通道, 截污后两年监测发现该河段大型底栖动物从无到有, 种数、密度和生物量从少到多, 群落结构处于向多样性恢复的过程中。刘修泽等(2011)发现辽宁旅顺南部的基岩海岸潮间带大型底栖动物群落平均生物量达4312.5g•m-2, 平均栖息密度达2966个•m-2, 原因是该区域为确权海域, 生物资源管理较科学合理, 人为干预较少, 采捕经济种时执行取大留小。本文中受到管理的滩涂贝类养殖区断面S5和S6, 采样潮带平均种数分别达12.8种和10.8种, 多样性指数也显著高于其他断面, 表明管理措施促进底栖动物群落的维持和发展。在国家海洋局支持下, 目前有关部门正准备在防城河口湾实施“蓝色海湾”整治行动, 水道疏浚、拆除原有堤围、生态化海堤建设等工程将急剧改变河口湾水动力、水质和沉积物状况, 必须对其生态影响进行严密跟踪调查监测, 及时评估工程效果, 编制和实施海域生态保护及修复计划。

The authors have declared that no competing interests exist.

[1]
蔡立哲, 厉红梅, 林鹏, 等, 2001. 深圳河口潮间带泥滩多毛类的数量变化及环境影响[J]. 厦门大学学报(自然科学版), 40(3): 741-750.1996年 1月至 1998年 12月在深圳河口潮间带泥滩获得多毛类 2 5种 ,隶属 15科 2 3属 .多毛类优势种为羽须鳃沙蚕 ( Dendronereis pinnaticirrus)、腺带刺沙蚕 ( N eanthes glandicincta)、尖刺缨虫( Potamilla acuminata)、独毛虫 ( Tharyx sp.)、寡鳃齿吻沙蚕 ( N ephtys oligobranchia)和小头虫( Capitella capitata) .A断面多毛类生物量的季节变化为每年 4月 (春季 )最高 ,10月 (秋季 )最低 ,RB断面的多毛类从 1996年 7月起 ,以及 ET断面的多毛类从 1997年 7月至 1998年 4月 ,均处于低密度和低生物量状态 .根据不同时间内多毛类优势种、密度和生物量的比较 ,判断了多毛类栖息环境受扰动状况 .A和 ET断面 1997年 10月至 1998年 10月、RB断面 1996年 7月至 1998年 10月均受到污染扰动

DOI

CAI LIZHE, LI HONGMEI, LIN PENG, et al, 2001. Analysis of environmental effect and polychaete quantitative variations on intertidal mudflat in Shenzhen estuary[J]. Journal of Xiamen University (Natural Science), 40(3): 741-750 (in Chinese with English abstract).

[2]
蔡立哲, 林鹏, 厉红梅, 2007. 截污后深圳河落马洲段大型底栖动物群落的恢复过程[J]. 应用与环境生物学报, 13(4): 497-500.2000年4月至2002年4月,对截污前后的深圳河落马洲段大型底栖动物进行两周年的季度监测.结果表明,截污前深圳河落马洲段没有发现大型底栖动物;截污后大型底栖动物种数、密度、生物量和种类多样性指数(H’)有随时间推移呈增加的趋势;截污后底泥中硫化物、总氮、总磷随时间推移呈下降趋势.由此可见,截污后深圳河落马洲段大型底栖动物从无到有,种数、密度和生物量从少到多,群落结构处于向多样性恢复的过程中.图6表2参11

DOI

CAI LIZHE, LIN PENG, LI HONGMEI, 2007. Restoration process of macrofaunal community at Luomazhou section of the Shenzhen River after pollution interception[J]. Chinese Journal of Applied & Environmental Biology, 13(4): 497-500 (in Chinese with English abstract).

[3]
崔磊, 吕颂辉, 董悦镭, 等, 2017. 围填海工程对淇澳岛附近水域环境因子与生物群落的影响[J]. 热带海洋学报, 36(2): 96-105.围填海工程是人类利用、开发海洋的重要方式,但是频繁开展的人类围填海活动对当地的海洋生态系统产生了深远的影响.以淇澳岛附近水域为研究区域,调查该水域围填海前后环境因子与生物群落的变化情况,从环境的变化趋势以及浮游植物、浮游动物和鱼类在围填海前后种类及多样性的变化入手,研究从2010-2014年淇澳岛水域南部半潮礁围填海工程对当地水域生态系统造成的影响.结果表明,围填海工程对水体的重金属污染及富营养化都有着不同程度的负面影响,并降低了当地水域生物群落的稳定性,群落种类较围填海之前有所减少.

DOI

CUI LEI, SONGHUI, DONG YUELEI, et al, 2017. Influence on the biological community and environmental factors around Qi’ao Island caused by reclamation project[J]. Journal of Tropical Oceanography, 36(2): 96-105 (in Chinese with English abstract).

[4]
顾炎斌, 宋文豪, 姚韡远, 等, 2013. 东营市河口区潮间带大型底栖动物群落结构特征[J]. 海洋环境科学, 32(5): 702-706.根据2011年6月和9月2个航次在东营市河口区潮间带开展的大型底栖动物调查,对春、秋季节不同断面的大型底栖动物的种类组成、群落结构作了分析。结果表明河口区潮间带大型底栖动物共有29种,包括软体类13种,甲壳类11种,多毛类3种,鱼类2种。春季调查中优势种是泥螺Bullacta exarata、文蛤Meretrix meretrix、彩虹明樱蛤Moerella iridescens、日本镜蛤Dosinorbis japonica、托氏琩螺Trochus vesriarium、焦河蓝蛤Potamocorbula ustulata和豆形拳蟹Philyra pisum,秋季仅有四角蛤蜊Mactra veneriformis一个优势种。

GU YANBIN, SONG WENHAO, YAO WEIYUAN, et al, 2013. Intertidal macrobenthic community structural features in Hekou district[J]. Marine Environmental Science, 32(5): 702-706 (in Chinese with English abstract).

[5]
何斌源, 范航清, 张振日, 1998. 珍珠港红树林大型底栖动物生态的初步研究[M]//何其锐. 南海资源开发研究. 广州: 广东经济出版社: 1036-1048.

HE BINYUAN, FAN HANGQING, ZHANG ZHENRI, 1998. Preliminary study on the ecology of mangrove macrobenthos in Pearl bay, Guangxi [M]//HE QIRUI. Resources development and research in South China Sea. Guangzhou: Guangdong Economy Press: 1036-1048 (in Chinese).

[6]
何斌源, 邓朝亮, 罗砚, 2004. 环境扰动对钦州港潮间带大型底栖动物群落的影响[J]. 广西科学, 11(2): 143-147.为了了解钦州港海洋生态环境质量,于2001年春夏两季在钦州港码头区两侧的无名岛和旧营盘,及距离稍远的鸡墩头和鹿耳环的潮间带滩涂,对大型底栖动物状况进行调查。共设置4条断面,每个断面设2~3个站位,用样方方法定量采集动物样品。应用种类相似性指数、生物多样性指数和丰度生物量比较法分析大型底栖动物群落间差异及生态质量状况。结果表明:该海域滩涂潮间带上发现有大型底栖动物70种,包括软体动物贝类38种,甲壳类18种,多毛类5种,鱼类4种,及其他类群的动物5种。生境的相似导致在钦州港码头区两侧的2个断面潮间带动物群落间的相似性最大。在种群水平上,珠带拟蟹守螺(Cerithidea cingulata)为丰度和生物量上的主要优势种。在类群水平上,贝类为主要的优势类群。应用丰度生物量比较法发现码头区两侧的2个断面潮间带动物群落受到扰动,显然是由于环境经常变动导致的。同时,从4个断面的潮间带动物物种数及3个生物多样性指数的比较也得到同样的结论。

DOI

HE BINYUAN, DENG CHAOLIANG, LUO YAN, 2004. Effect of environmental fluctuation on macrobenthos community in the intertidal flats of Qinzhou Harbor[J]. Guangxi Sciences, 11(2): 143-147 (in Chinese with English abstract).

[7]
何斌源, 赖廷和, 王欣, 等, 2013. 廉州湾滨海湿地潮间带大型底栖动物群落次级生产力[J]. 生态学杂志, 32(8): 2104-2112.<p>于2011年1月、4月、7月和10月开展广西廉州湾的裸滩、红树林和茳芏(<em>Cyperus malaccensis</em>)盐沼3种湿地生境类型的潮间带大型底栖动物群落季节动态调查,采用Brey经验公式估算各生境次级生产力。结果表明:共采集到潮间带大型底栖动物8门156种,其中裸滩生境有136种,红树林生境85种,盐沼生境29种;站位平均种数为裸滩9.5 &plusmn;4.8种,红树林9.5&plusmn;3.9种,盐沼5.9&plusmn;1.9种,同时,各类群占总种数比例大小规律一致,为软体动物门&gt;节肢动物门&gt;环节动物门&gt;脊索动物门&gt;其他;盐沼生境大型底栖动物群落结构变化较小,宁波泥蟹(<em>Ilyoplax ningpoensis</em>)优势很明显,随着水体盐度上升,红树林和裸滩优势种由适应低盐环境向适应高盐环境的种类变化;廉州湾潮间带大型底栖动物群落的次级生产力平均为15.88 g&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>,裸滩、红树林和盐沼生境分别为16.16、9.97、3.88&nbsp; g&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>;P/B值平均为0.70,3种生境分别为盐沼1.02,裸滩0.70,红树林0.65;廉州湾潮间带大型底栖动物年湿质量生产量为14623 t。水体盐度和植被类型是影响廉州湾潮间带大型底栖动物群落结构的优势种群以致次级生产力的空间分布变化的主要因素。</p>

HE BINYUAN, LAI TINGHE, WANG XIN, et al, 2013. Secondary productivity of benthic macrofaunal community in intertidal zone of Lianzhou Bay, China[J]. Chinese Journal of Ecology, 32(8): 2104-2112 (in Chinese with English abstract).

[8]
何祥英, 苏搏, 许廷波, 等, 2012. 广西北仑河口红树林湿地大型底栖动物多样性的初步研究[J]. 湿地科学与管理, 8(2): 44-48.2010年7月对广西北仑河口红树林湿地的大型底栖动物进行调 查,共发现大型底栖动物8门10纲46科106种,其中软体动物49种,甲壳类36种,多毛类10种,其它类11种.生物量优势种和密度优势种都是软体动 物门的珠带拟蟹守螺.大型底栖动物平均生物量是103.09g/m2,平均密度是196个/m2.与历史调查数据比较,本次调查发现了69种本地新种;对 比国内6个红树林区底栖动物群落结构,其生物量及栖息密度属于中等偏下,物种多样性指数高于其它红树林区.结果表明:底栖动物的生物量及栖息密度与红树林 发育状况呈负相关的关系,物种多样性与红树林发育状况呈正相关的关系.

DOI

HE XIANGYING, SU BO, XU TINGBO, et al, 2012. Macrobenthic biodiversity in mangrove wetland at the estuary of Beilun River in Guangxi. Wetland Science & Management, 8(2): 44-48 (in Chinese with English abstract).

[9]
贺心然, 陈斌林, 高文婕, 等, 2015. 灌河口潮间带及其入海河段秋季大型底栖动物生态学研究[J]. 海洋科学, 39(5): 28-35.2011 年10 月对灌河口及其入海河段中潮带进行了11 个站位的大型底栖动物调查, 共发现大型底栖动物10 种, 均为软体动物。潮间带优势种为光滑河篮蛤(<i>Potamocorbula laevis</i>), 总平均丰度为92 个/m<sup>2</sup>总平均生物量为20.9 g/m<sup>2</sup>; 入海河段优势种为中华拟蟹守螺(<i>Cerithidea sinensis</i>), 总平均丰度为180 个/m<sup>2</sup>总平均生物量为52.5 g/m<sup>2</sup>。与邻近海域相比, 大型底栖动物物种数、丰度、H’等都较低。相关性分析表明有机污染物敌敌畏、OCPs、SVOCs 和重金属镉、汞、锌和总铬的浓度对生物量、丰度和H’有着显著或较大影响。研究表明, 灌河沿岸4 个化学工业园的排污及沿岸码头建设等对该海域产生了较大的人为扰动, 已不适宜部分大型底栖动物的生存, 需进行跟踪调查监测及时制定该海域生态保护、修复规划。

DOI

HE XINRAN, CHEN BINLIN, GAO WENJIE, et al, 2015. Ecological studies of macrobenthos in the intertidal zone and near sea section of Guan River in autumn[J]. Marine Sciences, 39(5): 28-35 (in Chinese with English abstract).

[10]
侯森林, 余晓韵, 鲁长虎, 2011. 盐城自然保护区射阳河口潮间带大型底栖动物空间分布与季节变化[J]. 生态学杂志, 30(2): 297-303.lt;p>2008年11月&mdash;2009年10月,在盐城自然保护区射阳河口潮间带按月份对大型底栖动物群落进行取样。共得到大型底栖动物16种,隶属3门4纲15科,为软体动物、节肢动物甲壳类和环节动物多毛类,其中,潮间带米草丛6种,高潮带光滩7种,中潮带光滩13种,低潮带光滩7种。对潮间带各样点的物种数、密度、生物量以及不同样点的生物多样性指数Margalef指数(<em>S</em>)、Shannon指数(<em>H</em>)、Pielou指数(<em>J</em>)和Simpson指数(<em>D</em>)进行样点-季节间无重复双因素方差分析,发现样点间物种数、密度和生物量差异极显著(所有<em>P</em><0.01),三者季节间差异均不显著;样点间<em>H</em>、<em>D</em>和<em>S</em>差异显著(所有<em>P</em><0.05),季节间差异均不显著;而季节间和样点间<em>J</em>差异均不显著。对四季4个样点的群落进行聚类和排序分析发现,中、高潮带光滩界限不明显,潮间带米草丛和低潮带光滩界限明显。结果表明:生境条件的不同是潮间带大型底栖动物群落组成差异的主要原因,同一生境大型底栖动物群落季节间差异不显著。</p>

HOU SENLIN, YU XIAOYUN, LU CHANGHU, 2001. Spatial distribution and seasonal variation of macrobenthos in intertidal flat of Sheyang estuary, Yancheng Nature Reserve[J]. Chinese Journal of Ecology, 30(2): 297-303 (in Chinese with English abstract).

[11]
金亮, 蔡立哲, 周细平, 等, 2007. 深圳湾北岸泥滩大型底栖动物次级生产力研究[J]. 台湾海峡, 26(3): 415-421.根据2005年3、6、9月和12月在深圳湾北岸泥滩9个取样站采集的大型底栖动物4个季度的定量样品,运用Brey(1990)的经验公式进行了大型底栖动物栖息丰度、生物量、次级生产力和P/B值的研究计算.整个研究区域大型底栖动物年次级生产力平均值(去灰干重)为54.55g/(m2.a),其中观鸟屋附近泥滩(A断面)较高,为68.85g/(m2.a),凤塘河口附近泥滩(H断面)为50.62g/(m2.a)次之,沙嘴码头附近泥滩(F断面)较低,为44.18g/(m2.a),深圳湾北岸泥滩大型底栖动物年平均P/B为2.95.可见,大型底栖动物次级生产力越靠近深圳河河口越低,这与越靠近深圳河河口,大型底栖动物个体越小、生活史更短的结果是一致的.

DOI

JIN LIANG, CAI LIZHE, ZHOU XIPING, et al, 2007. Secondary production of macrobenthos on the mudflat of northern Shenzhen Bay[J]. Journal of Oceanography in Taiwan Strait, 26(3): 415-421 (in Chinese with English abstract).

[12]
李国强, 叶伟鹏, 余怀勇, 等, 2017. 平潭岛中国鲎保护区沙质潮间带的大型底栖动物群落[J]. 海洋环境科学, 36(2): 179-185.

LI GUOQIANG, YE WEIPENG, YU HUAIYONG, et al, 2017. Community of benthic macrofauna on sandy intertidal zone in Chinese horseshoe crab reserve in Pingtan Island, China[J]. Marine Environmental Science, 36(2): 179-185 (in Chinese with English abstract).

[13]
厉红梅, 李适宇, 蔡立哲, 2003. 深圳湾潮间带底栖动物群落与环境因子的关系[J]. 中山大学学报(自然科学版), 42(5): 93-96.

LI HONGMEI, LI SHIYU, CAI LIZHE, 2003. Relationship between benthic community and environmental factors in Shenzhen Bay[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 42(5): 93-96 (in Chinese with English abstract).

[14]
厉红梅, 孟海涛, 2004. 深圳湾底栖动物群落结构时空变化环境影响因素分析[J]. 海洋环境科学, 23(1): 37-40.

LI HONGMEI, MENG HAITAO, 2004. Analysis of environmental factors impacting spatio-temporal variation of benthic community structure in Shenzhen Bay[J]. Marine Environmental Science, 23(1): 37-40 (in Chinese with English abstract).

[15]
黎清华, 万世明, 何军, 等, 2014. 近两百年来人类活动对北部湾潮间带环境的影响[J]. 海洋地质与第四纪地质, 34(1): 57-64.对北部湾潮间带两个柱状岩心沉积物进行了210Pb测年、粒度分布特征和重金属元素含量分析,并探讨了近两百年来人类活动对沉积环境的影响。结果表明,YX07和YX05岩心的平均沉积速率分别为0.45和0.37cm/a,分别约记录了231年和210年以来的环境历史。重金属元素含量变化特征与沉积物平均粒径变化大体相反,说明重金属元素倾向于在细粒级物质中富集;不活泼微量元素比值La/Th的大小及其在岩心深度上的稳定变化,说明两个岩心物源的同一性且一直没有发生明显变化。岩心沉积物记录的沉积环境在1930年以前主要是自然影响,而1930年以来则更多受到人类活动影响,1930年以来岩心沉积物粒度变粗,可能因为人口的增加和土地的开垦等因素,在自然降水量降低的情况下人为地增加土壤物理侵蚀。同时,岩心中A1校正后重金属元素As、Pb、Cu等的含量从1930年直线增加2-3倍,则表明大量工业和生活污水经河流倾泻到河口和近岸地区,致使潮间带沉积物中重金属污染状况严重。

LI QINGHUA, WAN SHIMING, HE JUN, et al, 2014. Human impact on the intertidal environment in Beibu Gulf over the last 200 years[J]. Marine Geology & Quaternary Geology, 34(1): 57-64 (in Chinese with English abstract).

[16]
李晓静, 周政权, 陈琳琳, 等, 2016. 山东烟台大沽夹河河口及邻近海域大型底栖动物群落特征[J]. 生物多样性, 24(2): 157-165.lt;p>为了解烟台大沽夹河河口及邻近海域大型底栖动物群落特征及受干扰情况, 于2012年9月在上述区域设置12个采样点进行大型底栖动物群落调查和分析。对采集的生物样品进行物种鉴定、计数和称重, 利用生物统计软件PRIMER计算优势度指数(<em>Y</em>)、Shannon-Wiener多样性指数(<em>H<sup>'</sup></em>)、Margalef丰富度指数(<em>D</em>)和Pielou均匀度指数(<em>J</em>), 并进行等级聚类(CLUSTER)、非度量多维标度排序(non-metric multi-dimensional scaling, MDS)及丰度/生物量曲线(abundance and biomass curves, ABC)分析。共采集和鉴定大型底栖动物89种, 优势类群为多毛类。总平均生物量为18.02 g/m&sup2; 软体动物贡献率最高; 总平均丰度为2,165 ind./m&sup2; 甲壳类贡献率最高。丰富度指数(<em>D</em>)、均匀度指数(<em>J</em>)和Shannon-Wiener多样性指数(<em>H</em><sup>'</sup>)分别为2.620 &plusmn; 1.324、0.585 &plusmn; 0.294和2.398 &plusmn; 1.351。CLUSTER聚类和MDS标序结果表明, 在30%的相似性水平, 不同站位可分为5组, 且不同组间差异显著。环境因子与群落分布特征相关性较大, 其中最能解释群落丰度和生物量空间分布特征的环境因子为水温、盐度和总磷含量。ABC曲线表明该区域超过80%的采样点其大型底栖动物已受到中等到严重程度的扰动。结合历史资料发现, 调查区域大型底栖动物群落物种呈小型化变动趋势, 尤其是大沽夹河入海口处, 物种组成单一, 小型甲壳类占绝对优势。</p>

DOI

LI XIAOJING, ZHOU ZHENGQUAN, CHEN LINLIN, et al.Characteristics of macrobenthic communities in the estuary of Dagujia River and its adjacent water areas in Yantai, Shandong[J]. Biodiversity Science, 24(2): 157-165 (in Chinese with English abstract).

[17]
刘修泽, 李轶平, 于旭光, 等, 2011. 旅顺南部基岩海岸潮间带大型底栖动物的群落结构研究[J]. 水产科学, 30(12): 777-780.于2010年6月对大连市旅顺口区南部基岩海岸潮间带大型底栖动物的种类、生物量、栖息密度进行了调查,对生物多样性和次级生产力进行了计算。调查结果表明,调查区域大型底栖动物20种,其中腔肠动物1种,环节动物1种,软体动物13种,节肢动物5种。大型底栖动物的平均生物量为4312.5g/m2,平均栖息密度为2966个/m2。调查区域的群落结构较为简单,但次级生产力水平高,营养结构较稳定。

DOI

LIU XIUZE, LI YIPING, YU XUGUANG, et al, 2011. The community structure of macrobenthos in intertidal zones in rocky shore in south Lvshun in Dalian[J]. Fisheries Science, 30(12): 777-780 (in Chinese with English abstract).

[18]
陆健健, 2003. 河口生态学[M]. 北京: 海洋出版社.

LU JIANJIAN, 2003. Estuary ecology[M]. Beijing: China Ocean Press (in Chinese).

[19]
许铭本, 赖俊翔, 张荣灿, 等, 2015. 北仑河口北岸潮间带大型底栖动物生态特征及潮间带环境质量评价[J]. 广东海洋大学学报, 35(1): 57-61.调查北仑河口北岸竹山岛沿岸3条潮间带断面大型底栖动物的生态特 征,共采集到大型底栖动物63种,其中软体动物29种,甲壳动物18种,多毛类12种,其他类4种。优势种为珠带拟蟹守螺(Cerithidea cingulata)、长腕和尚蟹(Mictyris longicarpus)、智利巢沙蚕(Diopatra chilienis)和艾氏活额寄居蟹(Diogenes penicillatus)。平均生物量为155.06 g/m2,平均栖息密度为343.8 ind/m2。香农-维纳多样性指数平均值为2.27,种类均匀度指数平均值为0.48,丰富度指数平均值为3.53。ABC曲线分析结果表明,3条断面 的潮间带大型底栖动物均受到了中等程度的扰动。Ⅰ~Ⅲ断面的大型底栖动物污染指数(MPI值)分别为2.61、0.16和-17.08。该海域的潮间带环 境受到了一定程度的人为活动干扰。

XU MINGBEN, LAI JUNXIANG, ZHANG RONGCAN, et al, 2015. Ecological characteristics of macrobenthic animals and environmental quality on the north shore intertidal zone of Beilun estuary[J]. Journal of Guangdong Ocean University, 35(1): 57-61 (in Chinese with English abstract).

[20]
叶属峰, 纪焕红, 曹恋, 等, 2004. 河口大型工程对长江河口底栖动物种类组成及生物量的影响研究[J]. 海洋通报, 23(4): 32-37.2002 年 5—6 月对长江口深水航道治理一期工程区域底栖动物进行了取样调查,研究分析了工程区域底栖动物种类组成和生物量分布特征。结果表明:① 底栖生物 19 种,与 1982—1983 年和 1998 年相比,分别减少 87.6 % 和 20.8 %,优势种为纽虫和沙蚕,出现率分别达 32 % 和 24 %;② 平均密度 21.8 个/ 2 2m ,比 1998 年下降 65.9 %;③ 平均生物量为 5.68 g/m (湿重),比 1982—1983 年下降 76.5 %;④ 一期工程对长江河口生态系统结构已产生影响,河口底栖

DOI

YE SHUFENG, JI HUANHONG, CAO LIAN, et al, 2004. Studies on the impacts of large-scale estuarine engineering on species composition and biomass of benthos in the Yangtze River estuary[J]. Marine Science Bulletin, 23(4): 32-37 (in Chinese with English abstract).

[21]
袁兴中, 陆健健, 2002. 长江口潮滩湿地大型底栖动物群落的生态学特征[J]. 长江流域资源与环境, 11(5): 414-420.长江口潮滩湿地共有大型底栖动物68种,河口低盐种、半咸水种和淡水种共存,反映了咸、淡水过渡环境的特点.沿着河口梯度,随着盐度的升高,底栖动物物种数增多.沿潮滩高程梯度,从低位盐沼到高位盐沼,随着海三棱草密度和生物量的增加,以及沉积物特性的变化,底栖动物物种丰度和多样性呈上升趋势.从潮沟底、潮沟边滩到草滩,潮沟系统小尺度生境变化导致底栖动物种类组成的生态系列变化.就长江口潮滩湿地来讲,不同尺度的空间异质性特点各异、主导因素亦有差别,河口盐度梯度、高程梯度、盐沼植被、潮沟系统对淤泥质河口潮滩湿地不同等级尺度的空间异质性起着主要的决定作用.正是这种不同尺度的异质性,维持着淤泥质河口潮滩湿地底栖动物群落结构的多样性和稳定性,使其表现出特大型河口淤泥质潮滩湿地底栖动物群落的独特性.尤其是沿高程分布的盐沼植被、潮沟系统、微地貌结构对潮滩湿地的底栖动物群落起着主要的调控作用.因此,在制订河口湿地恢复和重建计划时,对影响物底栖动物群落的盐沼植被、高程、地形(尤其是潮沟变化)应予以特别关注.

DOI

YUAN XINGZHONG, LU JIANJIAN, 2002. Ecological characteristics of macrozoobenthic community of tidal flat wetland in the Changjiang estuary[J]. Resources and Environment in the Yangtze Basin, 11(5): 414-420 (in Chinese with English abstract).

[22]
张敬怀, 2014. 珠江口及邻近海域大型底栖动物多样性随盐度、水深的变化趋势[J]. 生物多样性, 22(3): 302-310.lt;p>利用2006年7&ndash;8月(夏季)、2007年4&ndash;5月(春季)和2007年10&ndash;12月(秋季)珠江丰水期、平水期和枯水期3个航次在南中国海北部珠江口附近海域4条由河口、近岸到深水区调查断面的数据, 研究大型底栖动物多样性由河口&ndash;近岸&ndash;深水的变化趋势及与环境因子的关系。春季、夏季和秋季分别获得大型底栖动物273、256和148种, 各季节均以环节动物种类最多, 节肢动物次之。大型底栖动物种类数、丰度、生物量和Shannon-Wiener多样性指数均由河口向近岸海域升高, 再由近岸向外海深水区降低。Pielou均匀度深水区最高, 其次为近岸。河口和深水区大型底栖动物k-优势度曲线位于近岸浅水域曲线之上, 表明生物多样性由河口向近岸升高, 而由近岸向深水则降低。大型底栖动物与环境因子Pearson相关性分析表明, 春、秋季大型底栖动物种类数、丰度和生物量与水深呈显著的负相关, 秋季种类多样性指数和均匀度也与水深呈显著的负相关性, 而夏季仅生物量与水深呈显著的负相关; 春、秋季大型底栖动物种类数、生物量、丰度、多样性指数和种类均匀度与盐度的相关性不显著, 但是夏季大型底栖动物种类数、丰度、多样性指数和种类均匀度与盐度呈显著正相关。单位面积(0.2 m<sup>2</sup>)内, 珠江口及邻近海域大型底栖动物在近岸浅水区较深水区和河口生物多样性高, 且生物量丰富。</p>

DOI

ZHANG JINGHUAI, 2014. The variation of biodiversity of macrobenthic fauna with salinity and water depth near the Pearl Estuary of the northern South China Sea[J]. Biodiversity Science, 22(3): 302-310 (in Chinese with English abstract).

[23]
张莹, 吕振波, 徐宗法, 等, 2012. 环境污染对小清河口大型底栖动物多样性的影响[J]. 生态学杂志利用2008年7月小清河口和黄河口各8个站位的底栖动物调查资料,运用多种多样性指数对两河口底栖动物 群落多样性特征进行了比较,并运用Spearman相关分析分析了14个环境因素和底栖动物群落多样性特征的相关关系.结果显示,小清河口共有大型底栖动 物4门6纲17目35科37属38种,平均分类差异指数为85.7,分类差异变异指数为585.6,黄河口共有大型底栖动物6门9纲24目42科45属 48种,平均分类差异指数为89.3,分类差异变异指数为435.8.小清河口的多样性指数(H’)仅约为黄河口的1/3.Spearman相关分析表 明,H’与铵盐、硝酸盐、铜和汞含量呈负相关性,说明底栖动物群落多样性随着富营养化程度的提高而相应降低,营养物质氮的大量输入和重金属的污染对小清河 口大型底栖动物群落产生了一定负面影响.ABC曲线法分析显示,小清河口底栖动物的丰度优势度曲线与生物量优势度曲线相交,表明小清河口底栖动物群落处于 中度干扰状态;BOPA指数显示,小清河口8个站位中有4个站位受到不同程度的环境污染,生活污水和工业废水的排放可能对小清河口底栖动物生态特征带来巨 大影响,加强工业和生活污水排放管理,强化清洁生产,加强工业污染源的治理力度,对恢复小清河流域水质、改善生态环境具有重要意义.

ZHANG YING, LV ZHENBO, XU ZONGFA, et al, 2012, Impacts of environmental pollution on macrobenthos diversity in Xiaoqing estuary of Shandong Province, East China[J]. Chinese Journal of Ecology, 31(2): 381-387 (in Chinese with English abstract).

[24]
赵永强, 曾江宁, 高爱根, 等, 2009. 椒江口滩涂大型底栖动物群落格局与多样性[J]. 生物多样性, 17(3): 303-309.为了解椒江口滩涂大型底栖动物群落格局与多样性, 揭示其对环境变化的响应规律, 作者于2007年10月、2008年1月、4月和7月在椒江口南岸和北岸潮间带, 沿河流到海洋方向共布设6条采样断面进行大型底栖动物调查。分析了大型底栖动物种类组成、栖息密度和生物量的时空变化特征, 在此基础上运用<em>&alpha; &beta;</em>和<em>&gamma;</em>多样性测度方法对大型底栖动物多样性进行分析, 同时探讨了大型底栖动物群落结构对环境变化的响应方向及程度, 结果显示: (1) 6条断面共记录到大型底栖动物78种, 总种数随季节变化显著, 在空间上沿河流到海洋方向呈升高趋势; (2) 栖息密度的季节变化不显著(<em>P</em>=0.145&gt;0.05), 但空间变化显著(<em>P</em>=0.017&lt;0.05), 生物量的季节变化显著(<em>P</em>=0.012&lt;0.05), 空间变化极显著(<em>P</em>=0.004&lt;0.01); (3) <em>&beta;</em>和<em>&gamma;</em>多样性指数定量显示了椒江河口区域滩涂环境的多变性和大型底栖动物群落的多样性和更替性。

DOI

ZHAO YONGQIANG, ZENG JIANGNING, GAO AIGEN, et al, 2009. Community pattern and diversity of macrozoobenthos in an intertidal flat, Jiaojiang Estuary[J]. Biodiversity Science, 17(3): 303-309 (in Chinese with English abstract).

[25]
周进, 纪炜炜, 2012. 三都澳大型底栖动物次级生产力[J]. 海洋渔业, 34(1): 32-38.

ZHOU JIN, JI WEIWEI, 2012. Secondary productivity of macrobenthos in Sandu Bay[J]. Marine Fisheries, 34(1): 32-38 (in Chinese with English abstract).

[26]
ARBI I, ZHANG JINGPING, LIU SONGLIN, et al, 2017. Benthic habitat health assessment using macrofauna communities of a sub-tropical semi-enclosed bay under excess nutrients[J]. Marine Pollution Bulletin, 119(2): 39-49.

DOI

[27]
BELAN T A, 2003. Marine environmental quality assessment using polychaete taxocene characteristics in Vancouver Harbour[J]. Marine Environmental Research, 57(1-2): 89-101.Polychaete taxocene characteristics from seven stations in Vancouver Harbour obtained during the PICES Practical Workshop are presented. Thirty families and 79 polychaete species were identified. Polychaete density ranged from 194.0 individuals m 612 in Port Moody Arm to 846.0 individuals m 612 in the Central Harbour, with a mean abundance over the seven stations of 428.9 individuals m 612. Biomass varied from 3.0 g wet wt. m 612 to 28.5 g wet wt. m 612, with a mean biomass for the seven stations of 12.9 g wet wt. m 612. High species diversity and richness of polychaete taxocene were observed at two stations, the West Vancouver Laboratory in the Outer Harbour and at a far field reference station in Thornborough Cannel. Sediment quality assessment indicated severe adverse effects at two sites in Port Moody Arm, where high concentrations of chlorinated hydrocarbons and some trace metals were found. A limited number of species, dominance of pollution-tolerant Tharyx multifilis, and the lowest values of polychaete biomass and indices of richness and diversity were detected in Port Moody Arm. Rich species composition and domination of pollution-sensitive species provided evidence of unstressed communities at the far field reference station. Sites in the Outer Harbour, Central Harbour and Indian Arm were characterised by intermediate pollutant exposure.

DOI PMID

[28]
CARCEDO M C, FIORI S M, PICCOLO M C, et al, 2015. Variations in macrobenthic community structure in relation to changing environmental conditions in sandy beaches of Argentina[J]. Estuarine, Coastal and Shelf Science, 2015, 166: 56-64.

DOI

[29]
CHAPMAN M G, TOLHURST T J, 2004. The relationship between invertebrate assemblages and bio-dependant properties of sediment in urbanized temperate mangrove forests[J]. Journal of Experimental Marine Biology and Ecology, 304(1): 51-73.

DOI

[30]
EDGAR G J, BARRETT N S, 2002. Benthic macrofauna in Tasmanian estuaries: Scales of distribution and relationships with environmental variables[J]. Journal of Experimental Marine Biology and Ecology, 270(1): 1-24.Information on the distribution of species richness, faunal density, biomass and estimated productivity of benthic invertebrates in Tasmanian estuaries was quantified at a variety of spatial and temporal scales to assess general hypothesis relating community metrics to such environmental variables as salinity, seagrass biomass and sediment particle size. An associated aim was to assess appropriate scales of investigation for soft-sediment biota distributed in estuaries, including whether patterns identified at individual sites, estuaries, tidal levels or times are likely to have more general relevance. Faunal biomass and productivity varied principally at between-estuary (10 to 1000 km) and replicate-sample (1 m) scales, indicating that these two community metrics were largely responding to estuary-wide effects, such as nutrient loading, and to microhabitat features, rather than to locality characteristics at intermediate scales such as salinity, anoxia or sediment particle size. By contrast, faunal density showed greater response to tidal height (1 to 100 m) and to factors distributed at the locality scale within estuary (10 km) than to factors between estuary. Both faunal density and species richness in estuaries declined over three- and fivefold ranges down the shore from high water mark to the shallow sublittoral, while estimated productivity and biomass showed highest overall levels at low water mark. The greatest component of variance in species richness was associated with tidal height, with variance then distributed approximately evenly between other spatial scales examined. At the low-tide and shallow subtidal levels, species richness, faunal biomass and estimated productivity were all highly correlated with salinity and biomass of macrophytes, whereas faunal density was highly correlated with biomass of macrophytes only. Relationships between environmental and biological variables examined were poorly defined at high tidal levels. Seasonal plus interannual variance was much lower than spatial variance clear indication that sampling effort in studies would generally be better directed across a range of localities than for a single locality to be repeatedly investigated over time.

DOI

[31]
FUJII T, 2007. Spatial patterns of benthic macrofauna in relation to environmental variables in an intertidal habitat in the Humber estuary, UK: Developing a tool for estuarine shoreline management[J]. Estuarine, Coastal and Shelf Science, 75(1-2): 101-119.Spatial variations in benthic macrofaunal species composition, abundance and biomass in estuarine intertidal habitats have been often related to such environmental variables as salinity, sediment types and tidal depth. However, there have been few attempts to investigate the relations between such macrobenthic parameters and intertidal beach width gradient in order to predict their likely responses to coastal squeeze induced by accelerating sea-level rise in an estuarine environment. This article investigates the linkages between environmental variables and patterns in the distribution, abundance and biomass of estuarine intertidal macrobenthos in order to provide a basis for describing the effect of future sea-level rise in the Humber estuary, UK. Field surveys were conducted in September 2003 and 2004 over a variety of spatial scales based on a hierarchically scaled field study (system: 10 5 m; region: 10 5–10 4 m; local 10 4–10 3 m; transect: 10 3–10 2 m; station; 10 2–10 1 m) along two focal environmental gradients: (1) the longitudinal gradient (length of the estuary) over an entire estuarine system and (2) the beach width gradient (varying beach width altered by historic land-claim) over a sub-area of the estuary. Statistical analysis was carried out in order to identify key environmental variables and the most relevant spatial scales that best explain the observed spatial variability in macrobenthic biomasses. At the system scale, the dominant species were two bivalves Cerastoderma edule and Macoma balthica and a polychaete Nereis diversicolor, which accounted for 51.7%, 25.0% and 12.1%, respectively, of the total biomass. At the regional scale, univariate analysis showed clear trends in species richness, abundance and biomass along the longitudinal and beach width gradient. At the transect scale, multiple regression analysis revealed that the variances in biomass of M. balthica, C. edule and other remaining species as well as total macrobenthic biomass were largely explained (54–98%) by the key environmental variables, such as salinity, organic matter content, beach width and beach slope. At the station scale, the degree of variability explained by the environmental variables was markedly lower along beach width gradient (8–32%) than along longitudinal gradient (34–77%), but the analysis revealed a significant role of tidal depth along both gradients at this spatial scale. Overall, intertidal habitats with higher macrobenthic biomass were significantly positively related to higher salinity, muddier sediments, wider beach and shallower beach slope. This article indicates that such areas are currently situated around the lower and outer regions of the estuary where extensive shallow muddy intertidal areas can be found, but they will also be most susceptible to the impacts of sea-level rise due to their outer location and the shallowness of the beach in the Humber estuary.

DOI

[32]
GESTEIRA J L G, DAUVIN J-C, 2000. Amphipods are good bioindicators of the impact of oil spills on soft-bottom macrobenthic communities[J]. Marine Pollution Bulletin, 40(11): 1017-1027.The Amoco Cadiz oil spill in 1978, and the Aegean Sea oil spill in 1992, affected soft-bottom communities, respectively from the Bay of Morlaix (western English Channel) and from the R a de Ares and Betanzos in the north-western Iberian peninsula. These infralittoral communities on muddy fine sand showed similar species composition and structure and occurred in similar hydro-climatic conditions. The effects of the spills were identical in both areas with the disappearance of the amphipods especially those from the amphipod genus Ampelisca with a very low colonization of these species during the four years after the spill. The recovery rate of the amphipods was slow but progressive. In such communities no proliferation of opportunistics was observed after the stress. In the sites, where polychaetes dominated before the spill, they remained dominant, whereas other sites showed very low total abundances during the two years after the spill due to the absence of compensation for the disappearance of these crustaceans. In fact, there was a very low impact of the spill on polychaetes, but a high one on amphipods. In the future, it is suggested to focus monitoring after a spill only on a single amphipod group proposed as a bioindicator for detecting the impact of pollution. A polychaete/amphipod ratio is proposed to reflect temporal change of soft-bottom communities analogous to the nematode/copepod previously suggested for the meiobenthos. Detailed knowledge of the qualitative and quantitative structure of a benthic community is still needed in order to identify very precisely the effect of a pollution event.

DOI

[33]
OCCHIPINTI-AMBROGI A, SAVINI D, FORNI G, 2005. Macrobenthos community structural changes off Cesenatico coast (Emilia Romagna, Northern Adriatic), a six-year monitoring programme[J]. Science of the Total Environment, 353(1-3): 317-328.Soft bottom macrobenthos at a station located off Cesenatico (Emilia Romagna, Northern Adriatic Sea) was investigated seasonally for six years from July 1996 to July 2002. Species composition and abundance of the community have been studied in relation to fluctuation in the water environment parameters, sediment texture patterns and mucilage, that occurred mainly in the water column at the study site. Three major Po river flow peaks occurred in November 1996, October 2000 and May 2002; after these events the community was reduced to minimum abundance values (total density < 2000 individuals m 2). In the period between the first two episodes the river discharge remained rather low and conditions of increased salinity, lower nutrients and chl a and good oxygen saturation were experienced. The fossorial Crustacean Ampelisca diadema became dominant in the community between the first two river flow events, reaching maximum density of 10,200 individuals m 2 and substituting the bivalve Corbula gibba, indicator of sediment instability. Species richness increased in the same period. The role of Ampelisca as a facilitator in structuring the community is discussed. Corbula gibba never recovered to initial densities, apart from an abundance peak that occurred in the summer of 2000. Faunal composition seemed to evolve slowly towards a higher degree of structural complexity (positive trend in diversity and evenness index). In the study site near-bottom mucilage events occurred in the summers of 1997, 1998, 2002; they appeared uncorrelated with the observed changes in the community structure. Multivariate analysis of community structure (MDS, ANOSIM) illustrates that community changes in this station are driven mainly by hydrographical conditions influencing sediment texture patterns and trophic resources for the benthos.

DOI PMID

[34]
OTANI S, KOZUKI Y, KURATA K, et al, 2008. Relationship between macrobenthos and physical habitat characters in tidal flat in eastern Seto Inland Sea, Japan[J]. Marine Pollution Bulletin, 57(1-5): 142-148.The investigations were carried out at 6 tidal flats located on the eastern part of the Seto Inland Sea, Japan. This study was focused on physical characteristics of sediments , namely as particle size of sediment and difference in elevation, and generalizes the relationship between sediments and macrobenthos. A total of 192 species were collected at 187 stations at 6 tidal flats. Physical characteristics of sediment were classified into 9 groups by cluster analysis in relation to sediment particle size and difference in elevation. Those groups had also significant difference in physical characteristics of sediments, and were characterized by some specific macrobenthos species. Distribution of macrobenthos can be explained by the classification of physical characteristics of sediment. These findings show the possibility to predict the variety of macrobenthos community using the physical characteristics of sediment.

DOI PMID

[35]
PICANÇO T C, ALMEIDA C M R, ANTUNES C, et al, 2014. Influence of the abiotic characteristics of sediments on the macrobenthic community structure of the Minho estuary saltmarsh (Portugal)[J]. Limnetica, 33(1): 73-88.

[36]
REHITHA T V, ULLAS N, VINEETHA G, et al, 2017. Impact of maintenance dredging on macrobenthic community structure of a tropical estuary[J]. Ocean & Coastal Management, 144: 71-82.

[37]
SARKER J, TANMAY M H, RAHMAN F, et al, 2016. Assessment of coastal water pollution in Greater Noakhali-Bangladesh[J]. Journal of Coastal Zone Management, 19: 427.

Outlines

/