Journal of Tropical Oceanography >
Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season
Received date: 2019-04-08
Request revised date: 2019-05-15
Online published: 2020-01-09
Supported by
National Natural Science Foundation of China(41876088)
National Natural Science Foundation of China(41406097)
National Natural Science Foundation of China(41476030)
Copyright
The spring-neap tidal variation of the estuarine turbidity maximum (ETM) in the Pearl River Estuary (PRE) is studied, using the Regional Ocean Modeling System (ROMS). The longitudinal and lateral distribution of suspended sediment concentration (SSC) shows that the ETM is located between 22.3°-22.45°N and varies with flood and ebb tides. The main mechanism on the ETM formation is the bottom convergence generated by residual current. The location of the ETM is determined by horizontal advection. The sediment source is resuspended sediment on the shoal during spring tides. The fine sediment deposited on the shoal during neap tides is resuspended and transported downstream to the stagnation point during spring tides, and then trapped on the west shoal. The tidal pumping effect can transport suspended sediment seaward (landward) during spring (neap) tides, while the vertical shear always transports suspended sediment landward, both leading to the convergence of sediment in the ETM. The decomposition of residual current shows that the bottom landward residual flow is mainly induced by density difference, followed by asymmetric tidal-mixing. Moreover, there is little difference in residual currents between spring and neap tides.
YAN Dong , SONG Dehai , BAO Xianwen . Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season[J]. Journal of Tropical Oceanography, 2020 , 39(1) : 20 -35 . DOI: 10.11978/2019035
表1 珠江八大口门月平均输水输沙量Tab. 1 Monthly averaged water and sediment discharge of the Pearl River at the eight outlets |
月份 | 径流量/亿m3 | 输沙量/万t | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
虎门 | 蕉门 | 洪奇门 | 横门 | 磨刀门 | 鸡啼门 | 虎跳门 | 崖门 | 虎门 | 蕉门 | 洪奇门 | 横门 | 磨刀门 | 鸡啼门 | 虎跳门 | 崖门 | |
1月 | 29.41 | 10.96 | 9.61 | 11.98 | 20.52 | 2.34 | 3.24 | 3.94 | 4.47 | 3.52 | 2.75 | 3.63 | 5.61 | 0.83 | 0.89 | 0.93 |
2月 | 39.26 | 18.83 | 13.73 | 13.46 | 23.06 | 2.62 | 3.64 | 4.43 | 12.90 | 12.69 | 6.20 | 1.54 | 2.38 | 0.35 | 0.38 | 0.40 |
3月 | 61.77 | 32.58 | 21.10 | 16.48 | 28.24 | 3.21 | 4.46 | 5.43 | 59.48 | 90.60 | 42.53 | 5.66 | 8.76 | 1.30 | 1.39 | 1.46 |
4月 | 91.62 | 51.91 | 35.04 | 29.90 | 51.20 | 5.83 | 8.08 | 9.84 | 132.92 | 161.64 | 84.72 | 37.52 | 58.02 | 8.62 | 9.21 | 9.66 |
5月 | 94.76 | 55.84 | 42.53 | 44.58 | 76.35 | 8.69 | 12.06 | 14.67 | 122.46 | 180.75 | 108.19 | 83.68 | 129.42 | 19.22 | 20.54 | 21.55 |
6月 | 131.63 | 75.63 | 65.23 | 79.93 | 136.91 | 15.58 | 21.62 | 26.31 | 188.49 | 244.94 | 209.87 | 309.58 | 478.78 | 71.12 | 76.00 | 79.72 |
7月 | 104.32 | 57.06 | 66.66 | 105.06 | 179.94 | 20.48 | 28.41 | 34.58 | 105.48 | 137.23 | 223.73 | 502.64 | 777.35 | 115.47 | 123.40 | 129.43 |
8月 | 100.37 | 41.95 | 48.06 | 74.79 | 128.10 | 14.58 | 20.23 | 24.62 | 98.28 | 63.12 | 105.01 | 237.73 | 367.66 | 54.61 | 58.36 | 61.22 |
9月 | 69.29 | 27.74 | 28.39 | 40.76 | 69.82 | 7.95 | 11.02 | 13.42 | 53.13 | 26.46 | 35.23 | 72.40 | 111.97 | 16.63 | 17.77 | 18.64 |
10月 | 42.63 | 18.66 | 19.90 | 29.47 | 50.48 | 5.75 | 7.97 | 9.70 | 22.57 | 26.46 | 24.64 | 39.56 | 61.17 | 9.09 | 9.71 | 10.19 |
11月 | 30.71 | 12.27 | 12.70 | 18.39 | 31.50 | 3.59 | 4.97 | 6.05 | 9.55 | 5.08 | 12.39 | 31.36 | 48.49 | 7.20 | 7.70 | 8.07 |
12月 | 27.23 | 9.56 | 9.06 | 12.19 | 20.88 | 2.38 | 3.30 | 4.01 | 31.26 | 3.52 | 3.74 | 6.71 | 10.37 | 1.54 | 1.65 | 1.73 |
注: 参考Zhang等(2012)及Liu等(2018)。 |
表2 泥沙模型各粒级参数Tab. 2 Parameters used in the suspended-sediment model |
参数名 | 代表含义 | 数值 | 单位 |
---|---|---|---|
MUD_SD50 | 黏性泥沙中值粒径 | 31.25, 15.60, 7.80, 3.90, 1.95 | μm |
SAND_SD50 | 无黏泥沙中值粒径 | 0.50, 0.25, 0.13, 0.07 | mm |
MUD_WSED | 黏性泥沙沉降速度 | 0.62, 0.3, 0.12, 0.04, 0.01 | mm/s-1 |
SAND_WSED | 无黏泥沙沉降速度 | 57.6, 27.0, 8.7, 2.4 | mm·s-1 |
MUD_ERATE | 黏性泥沙侵蚀率 | 1E-5, 1E-5, 1E-5, 1E-5, 1E-5 | kg·m-2·s-1 |
SAND_ERATE | 无黏泥沙侵蚀率 | 1E-5, 1E-5, 1E-5, 1E-5 | kg·m-2·s-1 |
MUD_TAU_CE | 黏性泥沙临界侵蚀应力 | 0.06, 0.05, 0.04, 0.04, 0.03 | N·m-2 |
SAND_TAU_CE | 无黏泥沙临界侵蚀应力 | 0.27, 0.19, 0.14, 0.09 | N·m-2 |
图3 1999年7月大横琴站(a, c)和赤湾站(b, d)水位验证对比图左列为水位对比图, 右列为评价指标图。r2代表决定系数, rn代表标准化均方根误差 Fig. 3 Comparisons between observed and simulated water levels at Station Dahengqin (a, c) and Station Chiwan (b, d). The left column shows water level comparison; the right column shows the evaluation index. r2 stands for the determination coefficient, while rn stands for the standardized root mean square error. |
图4 流速站表层轴向流速对比验证结果左列为流速对比图, 右列为相关指数图。r2代表决定系数, rn代表标准化均方根误差。观测时间C4、C5站为7月25—26日, C6、C7站为7月23—24日, 中潮期间 Fig. 4 Comparison between observed and simulated surface velocities at stations C4, C5, C6, and C7. The left column shows velocity comparison, and the right column shows correlation index. r2 represents the determination coefficient, and rn represents the standardized root mean square error. The observation time is July 25-26 for stations C4 and C5, and July 23-24 for stations C6 and C7, during the middle tide |
图5 流速站底层轴向流速对比验证结果左列为流速对比图, 右列为相关指数图。r2代表决定系数, rn代表标准化均方根误差。观测时间C4、C5站为7月25—26日, C6、C7站为7月23—24日, 中潮期间 Fig. 5 Comparison between observed and simulated bottom velocities at stations C4, C5, C6, and C7. The left column shows velocity comparison, and the right column shows correlation index. r2 represents the determination coefficient, and rn represents the standardized root mean square error. The observation time is July 25-26 for stations C4 and C5, and July 23-24 for stations C6 and C7, during the middle tide |
图6 洪季伶仃洋表底层悬沙浓度模拟和遥感反演数据对比a. 洪季表层(模拟); b. 洪季底层(模拟); c. 洪季表层(反演)(Wang et al, 2018) Fig. 6 Simulated suspended sediment concentration at (a) surface and (b) bottom. (c) is the Landsat image (Wang et al, 2018) during flood season |
图7 悬沙站各深度浓度验证结果a. 表层浓度; b. 中层浓度; c. 底层浓度; d. 相关指数图。观测时间为7月23—24日 Fig. 7 Comparison between observed and simulated suspended sediment concentration at Station C6. a) Surface concentration; b) mid-depth concentration; c) bottom concentration; d) correlation index diagram. The observation time is July 23-24 |
图8 大、小潮期间轴向(断面A)盐度、悬沙浓度分布和余流结构a. 小潮盐度、悬沙浓度分布; b. 大潮盐度、悬沙浓度分布; c. 小潮余流分布; d. 大潮余流分布。a、b中的等值线代表盐度。为便于显示, 垂向流速扩大500倍 Fig. 8 Salinity, suspended sediment concentration, and residual current along Section A during (a, c) neap and (b, d) spring tides. Note that the vertical velocity is enlarged by 500 in (c) and (d). Isolines in (a) and (b) represent salinity |
图9 大小潮期间侧向(断面B)盐度、悬沙浓度分布和余流结构(垂向流速扩大500倍)a. 小潮盐度、悬沙浓度分布; b. 大潮盐度、悬沙浓度分布; c. 小潮余流分布; d. 大潮余流分布。a、b中的等值线代表盐度。为便于显示, 垂向流速扩大500倍 Fig. 9 Salinity, suspended sediment concentration, and residual current along Section B during. (a, c) neap and (b, d) spring tides. Note that the vertical velocity is enlarged by 500 in (c) and (d). Isolines in (a) and (b) represent salinity |
图11 轴向(断面A)底应力、侵蚀-沉积率、底流速、底层输沙率、底层余输沙、悬沙浓度时间变化图a. 潮位; b. 底应力; c. 侵蚀沉积率; d. 底流速; e. 底层输沙率(v·c); f. 50h滤波底层输沙率; g. 底层SSC(底悬沙浓度); 水平虚线标出了最大浑浊带位置, 竖直黑线代表低潮位时刻, 竖直红线代表高潮位时刻, 流速和输沙率向南为正 Fig. 11 Bottom stress (b), erosion-deposition rate (c), bottom velocity (d, positive seaward), bottom sediment transport rate (e), residual sediment transport (f), and suspended sediment concentration (g) along Section A. The horizontal dotted line indicates the position of the turbidity maximum zone. The vertical black line represents the low tide level, and the vertical red line represents the high tide level. The velocity and sediment transport rate are positive to the south |
图12 轴向悬沙输运机制分析的大小潮对比向南为正。上排代表小潮期间, 下排代表大潮期间。各列图自左至右分别为欧拉输运、斯托克斯输运、“潮泵”效应和垂向剪切 Fig. 12 Decomposition of longitudinal suspended sediment transport during neap (top panel) and spring (bottom panel) tides, respectively. Positive means southward. The top row represents neap tides, and the bottom row represents spring tides. From left to right, the graphs show Euler transport, Stokes transport, tidal pumping, and vertical shear transport |
图13 不同机制导致的输沙率大小潮对比颜色代表各输运项的散度, 其中辐聚为正, 辐散为负。上排代表小潮期间, 下排代表大潮期间。各列图自左至右分别为欧拉输运、斯托克斯输运、“潮泵”效应和垂向剪切 Fig. 13 Suspended sediment transport induced by different mechanisms during neap (top panel) and spring (bottom panel) tides. The color represents the divergence of each transport term. Convergence is shown as positive value, and divergence is, negative. The top row represents neap tides, and the bottom row represents spring tides. From left to right, the graphs show Euler transport, Stokes transport, tidal pump effect, and vertical shear |
图14 大潮期间轴向余流分解向南为正。a. 径流致余流UR; b. 密度余流UD; c. 非线性致余流UN; d. 混合不对称致余流UA; e. 各项总和; f. 原始余流 Fig. 14 Decomposition of longitudinal residual current during spring tides. Southward is positive. a) Runoff-induced residual flow UR; b) density-induced residual flow UD; c) nonlinearity-induced residual flow UN; d) mixing asymmetry-induced residual flow UA; e) sum of the four items; f. original residual flow |
图15 大潮期间侧向余流分解向东为正。a. 径流致余流UR; b. 密度余流UD; c. 非线性致余流UN; d. 混合不对称致余流UA; e. 各项总和; f. 原始余流 Fig. 15 Decomposition of lateral residual current during spring tides. Eastward is positive. a) Runoff-induced residual flow UR; b) density-induced residual flow UD; c) nonlinearity-induced residual flow UN; d) mixing asymmetry-induced residual flow UA; e) sum of the four items; f. original residual flow |
[1] |
陈卓英, 倪培桐 , 2003. 珠江黄茅海河口湾悬沙纵向输运机制分析[J]. 人民珠江, (6): 27-29, 43.
|
[2] |
江四义, 郑兆勇 , 2008. 从珠江口沉积物粒度参数特征分析泥沙来源及其运移趋势[J]. 中山大学学报(自然科学版), 47(S1):126-129.
|
[3] |
沈焕庭, 贺松林, 茅志昌 , 等, 2001. 中国河口最大浑浊带刍议[J]. 泥沙研究, (1):23-29.
|
[4] |
时钟 , 2000. 长江口细颗粒泥沙过程[J]. 泥沙研究, (6):72-80.
|
[5] |
孙志林 , 1993. 中国强混合河口最大浑浊区成因研究[J]. 海洋学报, 15(3):63-72.
|
[6] |
田向平 , 1986. 珠江河口伶仃洋最大混浊带研究[J]. 热带海洋学报, 5(2):27-35.
|
[7] |
王彪 , 2014. 伶仃洋河口环流特征及其动力机制分析[J]. 水动力学研究与进展A辑, 29(5):608-617.
|
[8] |
王崇浩, 韦永康 , 2006. 三维水动力泥沙输移模型及其在珠江口的应用[J]. 中国水利水电科学研究院学报, 4(4):246-252.
|
[9] |
肖志建 , 2012. 珠江河口及邻近海域表层沉积物特征及其泥沙运移趋势[J]. 海洋通报, 31(5):481-488.
|
[10] |
杨江平, 刘文涛 , 2015. 近30年珠江口内伶仃洋洪季最大浑浊带的变化特征[J]. 珠江水运, (16):58-62.
|
[11] |
朱泽南, 王惠群, 管卫兵 , 等, 2013. 丰水期珠江口黏性泥沙输运的三维数值模拟[J]. 海洋学研究, 31(3):25-35.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
/
〈 | 〉 |