[1] |
刁焕祥, 1986. 太平洋溶解氧垂直分布最小值形成机理的探讨[J]. 海洋学报, 8(2): 184-189. (in Chinese)
|
[2] |
冯士筰, 李凤岐, 李少菁, 1999. 海洋科学导论[M]. 北京: 高等教育出版社: 1-524. (in Chinese)
|
[3] |
黄企洲, 王文质, 李毓湘, 等, 1992. 南海海流和涡旋概况[J]. 地球科学进展, 7(5): 1-9.
|
|
HUANG QIZHOU, WANG WENZHI, LI YUXIANG, et al, 1992. General situations of the current and eddy in the South China Sea[J]. Advance in Earth Sciences, 7(5): 1-9. (in Chinese with English abstract)
|
[4] |
李学刚, 宋金明, 袁华茂, 等, 2017. 深海大洋最小含氧带(OMZ)及其生态环境效应[J]. 海洋科学, 41(12): 127-138.
|
|
LI XUEGANG, SONG JINMING, YUAN HUAMAO, et al, 2017. The oxygen minimum zones (OMZs) and its eco-environmental effects in ocean[J]. Marine Sciences, 41(12): 127-138. (in Chinese with English abstract)
|
[5] |
刘洋, 2010. 南海次表层、中层水团结构及其运动学特征的研究[D]. 青岛: 中国海洋大学.
|
|
LIU YANG, 2010. Study on the structures and the kinetics characteristics for the subsurface and intermediate water masses in the South China Sea[D]. Qingdao: Ocean University of China. (in Chinese with English abstract)
|
[6] |
刘洋, 鲍献文, 吴德星, 2011. 南海溶解氧垂直结构的季节变化分析[J]. 中国海洋大学学报, 41(1-2): 25-32.
|
|
LIU YANG, BAO XIANWEN, WU DEXING, 2011. Analysis of vertical structure and seasonal variation of the dissolved oxygen in the South China Sea[J]. Periodical of Ocean University of China, 41(1-2): 25-32. (in Chinese with English abstract)
|
[7] |
刘增宏, 许建平, 孙朝辉, 等, 2011. 吕宋海峡附近海域水团分布及季节变化特征[J]. 热带海洋学报, 30(1): 11-19.
|
|
LIU ZENGHONG, XU JIANPING, SUN CHAOHUI, et al, 2011. The characteristics of water mass distribution and its seasonal variation near the Luzon Strait[J]. Journal of Tropical Oceanography, 30(1): 11-19. (in Chinese with English abstract)
|
[8] |
龙爱民, 陈绍勇, 周伟华, 等, 2006. 南海北部秋季营养盐、溶解氧、pH值和叶绿素a分布特征及相互关系[J]. 海洋通报, 25(5): 9-16.
|
|
LONG AIMIN, CHEN SHAOYONG, ZHOU WEIHUA, et al, 2006. Distribution of macro-nutrients, dissolved Oxygen, pH and Chl a and their relationships in Northern South China Sea[J]. Marine Science Bulletin, 25(5): 9-16. (in Chinese with English abstract)
|
[9] |
罗琳, 李适宇, 厉红梅, 2005. 夏季珠江口水域溶解氧的特征及影响因素[J]. 中山大学学报(自然科学版), 44(6): 118-122.
|
|
LUO LIN, LI SHIYU, LI HONGMEI,2005. Characteristics of dissolved oxygen and its affecting factors in the Pearl River estuary in summer[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 44(6): 118-122. (in Chinese with English abstract)
|
[10] |
石晓勇, 李鸿妹, 韩秀荣, 等, 2014. 夏季南海北部典型中尺度物理过程对营养盐及溶解氧分布特征的影响[J]. 环境科学学报, 34(3): 695-703.
|
|
SHI XIAOYONG, LI HONGMEI, HAN XIURONG, et al, 2014. Influence of typical mesoscale oceanographical process on the distribution of nutrients and dissolved oxygen in the Northern part of South China Sea in summer[J]. Acta Scientiae Circumstantiae, 34(3): 695-703. (in Chinese with English abstract)
|
[11] |
杨嘉东, 1991. 南海中部海区溶解氧垂直分布最小值[J]. 海洋与湖沼, 22(4): 353-359.
|
|
YANG JIADONG, 1991. Minimum values of dissolved oxygen vertical distribution in the Central South China Sea[J]. Oceanologia et Limnologia Sinica, 22(4): 353-359. (in Chinese with English abstract)
|
[12] |
杨阳, 马媛, 史华明, 2013. 南海北部坡折带溶解氧分布特征及理化环境因子影响[J]. 海洋学报, 35(1): 104-110.
|
|
MA YUAN, SHI HUAMING, 2013. Characteristics of dissolved oxygen and its physical and chemistry influence factors in the slope break zone in northern South China Sea[J]. Acta Oceanologica Sinica, 35(1): 104-110. (in Chinese with English abstract)
|
[13] |
叶丰, 黄小平, 刘庆霞, 2012. 2010年夏季珠江口海域溶解氧的分布特征和海气交换通量[J]. 海洋环境科学, 31(3): 346-351.
|
|
YE FENG, HUANG XIAOPING, LIU QINGXIA, 2012. Characteristics of dissolved oxygen and O2 flux across the water-air interface of the Pearl River Estuary during summer 2010[J]. Marine Environmental Science, 31(3): 346-351. (in Chinese with English abstract)
|
[14] |
ASTRALDI M, CONVERSANO F, CIVITARESE G, et al, 2002. Water mass properties and chemical signatures in the central Mediterranean region[J]. Journal of Marine Systems, 33-34: 155-177.
doi: 10.1016/S0924-7963(02)00057-X
|
[15] |
BERTAGNOLLI A D, STEWART F J, 2018. Microbial niches in marine oxygen minimum zones[J]. Nature Reviews Microbiology, 16(12): 723-729.
doi: 10.1038/s41579-018-0087-z
|
[16] |
BOGRAD S J, CASTRO C G, DI LORENZO E, et al, 2008. Oxygen declines and the shoaling of the hypoxic boundary in the California Current[J]. Geophysical Research Letters, 35(12): L12607.
|
[17] |
BRANDT P, HORMANN V, KÖRTZINGER A, et al, 2010. Changes in the ventilation of the oxygen minimum zone of the tropical North Atlantic[J]. Journal of Physical Oceanography, 40(8): 1784-1801.
doi: 10.1175/2010JPO4301.1
|
[18] |
CAVAN E L, TRIMMER M, SHELLEY F, et al, 2017. Remineralization of particulate organic carbon in an ocean oxygen minimum zone[J]. Nature Communications, 8: 14847.
doi: 10.1038/ncomms14847
|
[19] |
CHU P C, LI RONGFENG, 2000. South China Sea isopycnal-surface circulation[J]. Journal of Physical Oceanography, 30(9): 2419-2438.
doi: 10.1175/1520-0485(2000)030<2419:SCSISC>2.0.CO;2
|
[20] |
CZESCHEL R, STRAMMA L, JOHNSON G C, 2012. Oxygen decreases and variability in the eastern equatorial Pacific[J]. Journal of Geophysical Research: Oceans, 117(C11): C11019.
|
[21] |
DAVIS C V, WISHNER K, RENEMA W, et al, 2021. Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations[J]. Biogeosciences, 18(3): 977-992.
doi: 10.5194/bg-18-977-2021
|
[22] |
DEUTSCH C, EMERSON S, THOMPSON L, 2005. Fingerprints of climate change in North Pacific oxygen[J]. Geophysical Research Letters, 32(16): L16604.
doi: 10.1029/2005GL023190
|
[23] |
DEUTSCH C, BRIX H, ITO T, et al, 2011. Climate-forced variability of ocean hypoxia[J]. Science, 333(6040): 336-339.
doi: 10.1126/science.1202422
|
[24] |
DU CHUANJUN, LIU ZHIYU, DAI MINHAN, et al, 2013. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model[J]. Biogeosciences, 10(10): 6419-6432.
doi: 10.5194/bg-10-6419-2013
|
[25] |
FARÍAS L, PAULMIER A, GALLEGOS M, 2007. Nitrous oxide and N-nutrient cycling in the oxygen minimum zone off northern Chile[J]. Deep Sea Research Part I: Oceanographic Research Papers, 54(2): 164-180.
doi: 10.1016/j.dsr.2006.11.003
|
[26] |
FRÖLICHER T L, JOOS F, PLATTNER G K, et al, 2009. Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble[J]. Global Biogeochemical Cycles, 23(1): GB1003.
|
[27] |
GARAU B, RUIZ S, ZHANG W G, et al, 2011. Thermal lag correction on Slocum CTD glider data[J]. Journal of Atmospheric and Oceanic Technology, 28(9): 1065-1071.
doi: 10.1175/JTECH-D-10-05030.1
|
[28] |
HE LEI, YIN KEDONG, YUAN XIANGCHENG,2019. Double maximum ratios of viruses to bacteria in the water column: implications for different regulating mechanisms[J]. Frontiers in Microbiology, 10: 1593.
doi: 10.3389/fmicb.2019.01593
|
[29] |
HELLY J J, LEVIN L A, 2004. Global distribution of naturally occurring marine hypoxia on continental margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 51(9): 1159-1168.
doi: 10.1016/j.dsr.2004.03.009
|
[30] |
ITO T, DEUTSCH C, 2013. Variability of the oxygen minimum zone in the tropical North Pacific during the late twentieth century[J]. Global Biogeochemical Cycles, 27(4): 1119-1128.
doi: 10.1002/2013GB004567
|
[31] |
ITO T, MINOBE S, LONG M C, et al, 2017. Upper ocean O2 trends: 1958-2015[J]. Geophysical Research Letters, 44(9): 4214-4223.
doi: 10.1002/grl.v44.9
|
[32] |
KAMYKOWSKI D, ZENTARA S J, 1990. Hypoxia in the world ocean as recorded in the historical data set[J]. Deep Sea Research Part A. Oceanographic Research Papers, 37(12): 1861-1874.
doi: 10.1016/0198-0149(90)90082-7
|
[33] |
KARSTENSEN J, STRAMMA L, VISBECK M, 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans[J]. Progress in Oceanography, 77(4): 331-350.
doi: 10.1016/j.pocean.2007.05.009
|
[34] |
KEELING R F, KÖRTZINGER A, GRUBER N, 2010. Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2: 199-229.
doi: 10.1146/marine.2010.2.issue-1
|
[35] |
KÖLLNER M, VISBECK M, TANHUA T, et al, 2016. Diapycnal diffusivity in the core and oxycline of the tropical North Atlantic oxygen minimum zone[J]. Journal of Marine Systems, 160: 54-63.
doi: 10.1016/j.jmarsys.2016.03.012
|
[36] |
LA FERLA R, AZZARO M, CIVITARESE G, et al, 2003. Distribution patterns of carbon oxidation in the eastern Mediterranean Sea: evidence of changes in the remineralization processes[J]. Journal of Geophysical Research Oceans, 108(C9): 8111.
|
[37] |
LEVIN L A, 2018. Manifestation, drivers, and emergence of open ocean deoxygenation[J]. Annual Review of Marine Science, 10: 229-260.
doi: 10.1146/marine.2018.10.issue-1
|
[38] |
LI FENGQI, LI LEI, WANG XIUQIN, et al, 2002. Water masses in the South China Sea and water exchange between the Pacific and the South China Sea[J]. Journal of Ocean University of Qingdao, 1(1): 19-24.
doi: 10.1007/s11802-002-0025-5
|
[39] |
QU TANGDONG, 2006. Thermohaline circulation in the deep South China Sea basin inferred from oxygen distributions[J]. Journal of Geophysical Research: Oceans, 111(C5): C05017.
|
[40] |
LIU ZENGHONG, CHEN XINGRONG, YU JIANCHENG, et al, 2019. Kuroshio intrusion into the South China Sea with an anticyclonic eddy: evidence from underwater glider observation[J]. Journal of Oceanology and Limnology, 37(5): 1469-1480.
doi: 10.1007/s00343-019-8290-y
|
[41] |
LLANILLO P J, PELEGRI J L, TALLEY L D, et al, 2018. Oxygen pathways and budget for the Eastern South Pacific Oxygen Minimum Zone[J]. Journal of Geophysical Research: Oceans, 123(3): 1722-1744.
doi: 10.1002/jgrc.v123.3
|
[42] |
LONG M C, DEUTSCH C, ITO T, 2016. Finding forced trends in oceanic oxygen[J]. Global Biogeochemical Cycles, 30(2): 381-397.
doi: 10.1002/gbc.v30.2
|
[43] |
MARTINI M, BUTMAN B, MICKELSON M J, 2007. Long-term performance of Aanderaa Optodes and sea-bird SBE-43 dissolved-oxygen sensors bottom mounted at 32 m in Massachusetts bay[J]. Journal of Atmospheric and Oceanic Technology, 24(11): 1924-1935.
doi: 10.1175/JTECH2078.1
|
[44] |
MAVROPOULOU A M, VERVATIS V, SOFIANOS S, 2020. Dissolved oxygen variability in the Mediterranean Sea[J]. Journal of Marine Systems, 208: 103348.
doi: 10.1016/j.jmarsys.2020.103348
|
[45] |
OSCHLIES A, BRANDT P, STRAMMA L, et al, 2018. Drivers and mechanisms of ocean deoxygenation[J]. Nature Geoscience, 11(7): 467-473.
doi: 10.1038/s41561-018-0152-2
|
[46] |
PAULMIER A, RUIZ-PINO D, 2009. Oxygen minimum zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 80(3-4): 113-128.
doi: 10.1016/j.pocean.2008.08.001
|
[47] |
QU TANGDONG, MITSUDERA H, YAMAGATA T, 2000. Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research: Oceans, 105(C3): 6415-6424.
|
[48] |
QU TANGDONG, GIRTON J B, WHITEHEAD J A, 2006. Deepwater overflow through Luzon Strait[J]. Journal of Geophysical Research: Oceans, 111(C1): C01002.
|
[49] |
RASSE R, DALL'OLMO G, 2019. Do oceanic hypoxic regions act as barriers for sinking particles? A case study in the eastern tropical North Atlantic[J]. Global Biogeochemical Cycles, 2019, 33(12): 1611-1630.
doi: 10.1029/2019GB006305
|
[50] |
SCHMIDTKO S, STRAMMA L, VISBECK M, 2017. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 542(7641): 335-339.
doi: 10.1038/nature21399
|
[51] |
SHU YEQIANG, WANG QIANG, ZU TINGTING, 2018. Progress on shelf and slope circulation in the northern South China Sea[J]. Science China Earth Sciences, 61(5): 560-571.
doi: 10.1007/s11430-017-9152-y
|
[52] |
SHU YEQIANG, CHEN JU, LI SHUO, et al, 2019. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017[J]. Science China Earth Sciences, 62(2): 451-458.
doi: 10.1007/s11430-018-9239-0
|
[53] |
STRAMMA L, JOHNSON G C, SPRINTALL J, et al, 2008. Expanding oxygen-minimum zones in the tropical oceans[J]. Science, 320(5876): 655-658.
doi: 10.1126/science.1153847
|
[54] |
STRAMMA L, JOHNSON G C, FIRING E, et al, 2010. Eastern Pacific oxygen minimum zones: supply paths and multidecadal changes[J]. Journal of Geophysical Research: Oceans, 115(C9): C09011.
|
[55] |
TALLEY L D, 1993. Distribution and formation of North Pacific intermediate water[J]. Journal of Physical Oceanography, 23(3): 517-537.
doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
|
[56] |
TANHUA T, HAINBUCHER D, SCHROEDER K, et al, 2013. The Mediterranean sea system: a review and an introduction to the special issue[J]. Ocean Science, 9(5): 789-803.
doi: 10.5194/os-9-789-2013
|
[57] |
WANG DONGXIAO, WANG QIANG, CAI SHUQUN, et al, 2019. Advances in research of the mid-deep South China Sea circulation[J]. Science China Earth Sciences, 62(12): 1992-2004.
doi: 10.1007/s11430-019-9546-3
|
[58] |
WANG NA, HUANG BAOQI, DONG YITING, et al, 2018. The evolution of deepwater dissolved oxygen in the northern South China Sea since 400 ka[J]. Palaeoworld, 27(2): 301-308.
doi: 10.1016/j.palwor.2017.11.001
|
[59] |
WISHNER K F, OUTRAM D M, SEIBEL B A, et al, 2013. Zooplankton in the eastern tropical north Pacific: boundary effects of oxygen minimum zone expansion[J]. Deep Sea Research Part I: Oceanographic Research Papers, 79: 122-140.
doi: 10.1016/j.dsr.2013.05.012
|
[60] |
XIU PENG, CHAI FEI, 2020. Eddies affect subsurface phytoplankton and oxygen distributions in the North pacific subtropical gyre[J]. Geophysical Research Letters, 47(15): e2020GL087037.
|
[61] |
YU JIANCHENG, ZHANG AIQUN, JIN WENMING, et al, 2011. Development and experiments of the Sea-Wing underwater glider[J]. China Ocean Engineering, 25(4): 721-736.
doi: 10.1007/s13344-011-0058-x
|