[1] |
李建鸿, 黄昌春, 查勇, 等, 2021. 长江干流表层水体悬浮物的空间变化特征及遥感反演[J]. 环境科学, 42(11): 5239-5249.
|
|
LI JIANHONG, HUANG CHANGCHUN, ZHA YONG, et al, 2021. Spatial variation characteristics and remote sensing retrieval of total suspended matter in surface water of the yangtze river[J]. Environmental Science, 42(11): 5239-5249 (in Chinese with English abstract).
|
[2] |
柳青青, 孟朔羽, 徐茗, 等, 2021. 随机森林反演卫星遥感海表面盐度研究[J]. 武汉大学学报(信息科学版), 48(9): 1538-1545.
|
|
LIU QINGQING, MENG SHUOYU, XU MING, et al, 2021. Satellite sea surface salinity retrieval using random forest model[J]. Geomatics and Information Science of Wuhan University, 48(9): 1538-1545 (in Chinese with English abstract).
|
[3] |
王春玲, 史锴源, 明星, 等, 2022. 基于机器学习的水体化学需氧量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 42(8): 2353-2358.
|
|
WANG CHUNLING, SHI KAIYUAN, MING XING, et al, 2022. A comparative study of the cod hyperspectral inversion models in water based on the maching learning[J]. Spectroscopy and Spectral Analysis, 42(8): 2353-2358 (in Chinese with English abstract).
|
[4] |
张莹, 谢仕义, 邓伟彬, 等, 2019. 基于机器学习理论的海洋水质评价模型[J]. 物探化探计算技术, 41(6): 819-825.
|
|
ZHANG YING, XIE SHIYI, DENG WEIBIN, et al, 2019. Ocean water quality evaluation model based on machine learning theory[J]. Computing Techniques for Geophysical and Geochemical Exploration, 41(6): 819-825 (in Chinese with English abstract).
|
[5] |
AIKEN J, MOORE G F, TREES C C, et al, 1996. The SeaWiFS CZCS-type pigment algorithm[J]. Oceanographic Literature Review, 43(3): 315-316.
|
[6] |
BINH N A, HOA P V, THAO G T P, et al, 2022. Evaluation of Chlorophyll-a estimation using Sentinel 3 based on various algorithms in southern coastal Vietnam[J]. International Journal of Applied Earth Observation and Geoinformation, 112: 102951.
|
[7] |
BOSS E, PICHERAL M, LEEUW T, et al, 2013. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition[J]. Methods in Oceanography, 7: 52-62.
|
[8] |
BREIMAN L, 2001. Random forests[J]. Machine Learning, 45(1): 5-32.
|
[9] |
CABALLERO I, ROMÁN A, TOVAR-SÁNCHEZ A, et al, 2022. Water quality monitoring with Sentinel-2 and Landsat-8 satellites during the 2021 volcanic eruption in La Palma (Canary Islands)[J]. Science of the Total Environment, 822: 153433.
|
[10] |
CANNIZZARO J P, CARDER K L, 2006. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters[J]. Remote Sensing of Environment, 101(1): 13-24.
|
[11] |
CAPPELLI F, GRIMALDI S, 2023. Feature importance measures for hydrological applications: insights from a virtual experiment[J]. Stochastic Environmental Research and Risk Assessment, 37(12): 4921-4939.
|
[12] |
CHEN BOTAO, MU XI, CHEN PENG, et al, 2021. Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data[J]. Ecological Indicators, 133: 108434.
|
[13] |
DENG LIN, ZHOU WEN, CAO WENXI, et al, 2019. Retrieving phytoplankton size class from the absorption coefficient and chlorophyll a concentration based on support vector machine[J]. Remote Sensing, 11(9): 1054.
|
[14] |
FU DONGYANG, HUANG YUYE, LIU DAZHAO, et al, 2020. Analysis of the regional spectral properties in northwestern South China Sea based on an empirical orthogonal function[J]. Acta Oceanologica Sinica, 39(7): 107-114.
|
[15] |
GAO SHAN, WANG HUI, 2008. Seasonal and spatial distributions of phytoplankton biomass associated with monsoon and oceanic environments in the South China Sea[J]. Acta Oceanologica Sinica, 27(6): 17-32.
|
[16] |
GARABAGHI F H, BENZER S, BENZER R, 2023. Modeling dissolved oxygen concentration using machine learning techniques with dimensionality reduction approach[J]. Environmental Monitoring and Assessment, 195(7): 879.
doi: 10.1007/s10661-023-11492-3
pmid: 37354319
|
[17] |
GITELSON A, KARNIELI A, GOLDMAN N, et al, 1996. Chlorophyll estimation in the Southeastern Mediterranean using CZCS images: adaptation of an algorithm and its validation[J]. Journal of Marine Systems, 9(3-4): 283-290.
|
[18] |
HE QINGYOU, ZHAN HAIGANG, XU JIE, et al, 2019. Eddy-induced chlorophyll anomalies in the Western South China Sea[J]. Journal of Geophysical Research: Oceans, 124(12): 9487-9506.
|
[19] |
HUYNH H N T, ALVERA-AZCÁRATE A, BECKERS J M, 2020. Analysis of surface chlorophyll a associated with sea surface temperature and surface wind in the South China Sea[J]. Ocean Dynamics, 70(1): 139-161.
|
[20] |
KAHRU M, GILLE S T, MURTUGUDDE R, et al, 2010. Global correlations between winds and ocean chlorophyll[J]. Journal of Geophysical Research: Oceans, 115(C12): C12040.
|
[21] |
KOTTA D, KITSIOU D, 2019. Chlorophyll in the eastern Mediterranean sea: correlations with environmental factors and trends[J]. Environments, 6(8): 98.
|
[22] |
KWONG I H Y, WONG F K K, FUNG T, 2022. Automatic mapping and monitoring of marine water quality parameters in Hong Kong using sentinel-2 image time-series and google earth engine cloud computing[J]. Frontiers in Marine Science, 9: 871470.
|
[23] |
LEE Z P, DU KEPING, VOSS K J, et al, 2011. An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance[J]. Applied Optics, 50(19): 3155-3167.
|
[24] |
LI JUNYI, LI MIN, WANG CHAO, et al, 2023. Multiple mechanisms for chlorophyll a concentration variations in coastal upwelling regions: a case study east of Hainan Island in the South China Sea[J]. Ocean Science, 19(2): 469-484.
|
[25] |
LOISEL H, VANTREPOTTE V, OUILLON S, et al, 2017. Assessment and analysis of the chlorophyll-a concentration variability over the Vietnamese coastal waters from the MERIS ocean color sensor (2002-2012)[J]. Remote Sensing of Environment, 190: 217-232.
|
[26] |
MA CHUNLEI, ZHAO JUN, AI BIN, et al, 2021. Two-decade variability of sea surface temperature and chlorophyll-a in the Northern South China Sea as revealed by reconstructed cloud-free satellite data[J]. IEEE Transactions on Geoscience and Remote Sensing, 59(11): 9033-9046.
|
[27] |
MATSUMOTO J, OLAGUERA L M P, NGUYEN-LE D, et al, 2020. Climatological seasonal changes of wind and rainfall in the Philippines[J]. International Journal of Climatology, 40(11): 4843-4857.
|
[28] |
O’REILLY J E, MARITORENA S, MITCHELL B G, et al, 1998. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 103(C11): 24937-24953.
|
[29] |
O’REILLY J E, WERDELL P J, 2019. Chlorophyll algorithms for ocean color sensors - OC4, OC5 & OC6[J]. Remote Sensing of Environment, 229: 32-47.
|
[30] |
POPE R M, FRY E S, 1997. Absorption spectrum (380-700 nm) of pure water. Ⅱ. Integrating cavity measurements[J]. Applied Optics, 36(33): 8710-8723.
|
[31] |
RAHMANI F, LAWSON K, OUYANG WENYU, et al, 2021. Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data[J]. Environmental Research Letters, 16(2): 024025.
|
[32] |
ROESLER C S, BARNARD A H, 2013. Optical proxy for phytoplankton biomass in the absence of photophysiology: rethinking the absorption line height[J]. Methods in Oceanography, 7: 79-94.
|
[33] |
SHENG CHONG, JIAO J J, LUO XIN, et al, 2023. Offshore freshened groundwater in the Pearl River estuary and shelf as a significant water resource[J]. Nature Communications, 14(1): 3781.
doi: 10.1038/s41467-023-39507-0
pmid: 37355684
|
[34] |
SISWANTO E, TANG JUNWU, YAMAGUCHI H, et al, 2011. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 67(5): 627-650.
|
[35] |
TASSAN S, 1994. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 33(12): 2369-2378.
doi: 10.1364/AO.33.002369
pmid: 20885588
|
[36] |
WANG FEIER, WANG YIXU, ZHANG KAI, et al, 2021. Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation[J]. Environmental Research, 202: 111660.
|
[37] |
WANG TIANHAO, SUN YU, SU HUA, et al, 2023. Declined trends of chlorophyll a in the South China Sea over 2005-2019 from remote sensing reconstruction[J]. Acta Oceanologica Sinica, 42(1): 12-24.
|
[38] |
WU MEILIN, WANG YOUSHAO, DONG JUNDE, et al, 2017. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China[J]. Frontiers of Earth Science, 11(1): 114-126.
doi: 10.1007/s11707-016-0585-0
|
[39] |
XIAN TAO, SUN LIANG, YANG YUANJIAN, et al, 2012. Monsoon and eddy forcing of chlorophyll-a variation in the northeast South China Sea[J]. International Journal of Remote Sensing, 33(23): 7431-7443.
|
[40] |
YUAN XIAOGUANG, LIU SHIRUO, FENG WEI, et al, 2023. Feature importance ranking of random forest-based end-to-end learning algorithm[J]. Remote Sensing, 15(21): 5203.
|
[41] |
ZHANG XIANQING, LI CAI, ZHENG YUANNING, et al, 2023. Approach for estimating the vertical distribution of the diffuse attenuation coefficient in the South China Sea[J]. Optics Express, 31(26): 43771-43789.
doi: 10.1364/OE.503850
pmid: 38178466
|
[42] |
ZHANG YIFAN, FITCH P, VILAS M P, et al, 2019. Applying multi-layer artificial neural network and mutual information to the prediction of trends in dissolved oxygen[J]. Frontiers in Environmental Science, 7: 46.
|
[43] |
ZHAO YANPING, SONG YUMEI, CUI JINLI, et al, 2020. Assessment of water quality evolution in the Pearl River estuary (South Guangzhou) from 2008 to 2017[J]. Water, 12( 1): 59.
|
[44] |
ZHENG YUANNING, LI CAI, ZHANG XIANQING, et al, 2024. Estimation of water quality parameters based on time series hydrometeorological data in Miaowan Island[J]. Ecological Indicators, 159: 111693.
|
[45] |
ZHI WEI, APPLING A P, GOLDEN H E, et al, 2024. Deep learning for water quality[J]. Nature Water, 2(3): 228-241.
|