热带海洋学报 ›› 2021, Vol. 40 ›› Issue (3): 1-14.doi: 10.11978/YG2020006CSTR: 32234.14.YG2020006
• 综述 • 下一篇
收稿日期:
2020-11-16
修回日期:
2021-01-07
出版日期:
2021-05-10
发布日期:
2021-01-08
通讯作者:
王友绍
作者简介:
王友绍(1963—), 男, 博士, 山东省临沂市人, 教授, 博士生导师, 主要从事海洋环境生态学研究。email: 基金资助:
Received:
2020-11-16
Revised:
2021-01-07
Online:
2021-05-10
Published:
2021-01-08
Contact:
WANG Youshao
Supported by:
摘要:
红树林是以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本植物群落, 具有“四高”特性(高生产力、高归还率、高分解率和高抗逆性)的典型海洋生态系统; 目前, 全球约有红树林1700万公顷, 主要分布在南北半球25℃等温线内。红树林生态系统的净初级生产力高达2000gC·m-2·a-1, 具有高强度的物质循环、能量流动以及丰富的生物多样性, 对热带、亚热带海洋生态系统的维持与发展起到关键作用, 并在全球变化过程中扮演着十分重要的角色。近30年来, 全球气候变化已引起了国内外学者的极大关注。红树林生态系统位于热带、亚热带海岸潮间带, 是一个脆弱的、敏感的生态系统, 也是首先受全球气候变化影响的典型海洋生态系统之一。作为全球海岸带地区应对全球气候变化最为重要的生态屏障之一, 气候变化将严重影响着全球红树林的生存和分布方式。本文将从全球变暖、海平面上升、大气中CO2浓度的增加和极端天气4个主要方面, 揭示全球气候变化对红树林生态系统的影响与变化特征, 阐述红树林对全球变暖、海平面上升、大气中CO2浓度增加和极端天气响应与适应的生态学机制, 并简要概述了红树林在减缓全球气候变化危害中的重要作用。全球气候变化也将为红树林的研究、保护和发展带来机遇与挑战。
中图分类号:
王友绍. 全球气候变化对红树林生态系统的影响、挑战与机遇[J]. 热带海洋学报, 2021, 40(3): 1-14.
WANG Youshao. Impacts, challenges and opportunities of global climate change on mangrove ecosystems[J]. Journal of Tropical Oceanography, 2021, 40(3): 1-14.
[1] |
陈鹭真, 王文卿, 张宜辉, 等, 2010. 2008年南方低温对我国红树植物的破坏作用[J]. 植物生态学报, 34(2):186-194.
doi: 10.3773/j.issn.1005-264x.2010.02.010 |
CHEN LUZHEN, WANG WENQING, ZHANG YIHUI, et al, 2010. Damage to mangroves from extreme cold in early 2008 in southern China[J]. Chinese Journal of Plant Ecology, 34(2):186-194 (in Chinese with English abstract).
doi: 10.3773/j.issn.1005-264x.2010.02.010 |
|
[2] | 陈玉军, 郑德璋, 廖宝文, 等, 2000. 台风对红树林损害及预防的研究[J]. 林业科学研究, 13(5):524-529. |
CHEN YUJUN, ZHENG DEZHANG, LIAO BAOWEN, et al, 2000. Researches on typhoon damage to mangroves and preventive measures[J]. Forest Research, 13(5):524-529 (in Chinese with English abstract). | |
[3] | 黄晓林, 彭欣, 仇建标, 等, 2009. 浙南红树林现状分析及开发前景[J]. 浙江林学院学报, 26(3):427-433. |
HUANG XIAOLIN, PENG XIN, QIU JIANBIAO, et al, 2009. Mangrove status and development prospects in southern Zhejiang Province[J]. Journal of Zhejiang Forestry College, 26(3):427-433 (in Chinese with English abstract). | |
[4] | 蒋高明, 韩兴国, 林光辉. 1997. 大气CO2浓度升高对植物的直接影响—国外十余年来模拟实验研究主要手段及基本结论[J]. 植物生态学报, 21(6):489-502. |
JIANG GAOMING, HAN XINGGUO, LIN GUANGHUI, 1997. Response of plant growth to elevated [CO2]: a review on the chief methods and basic conclusions based on experiments in the external countries in past decade[J]. Acta Phytoecologica Sinica, 21(6):489-502 (in Chinese with English abstract). | |
[5] | 李玫, 廖宝文, 管伟, 等, 2009. 广东省红树林寒害的调查[J]. 防护林科技, (2):29-31. |
LI MEI, LIAO BAOWEN, GUAN WEI, et al, 2009. Survey on cold damage of mangroves in Guangdong Province[J]. Protection Forest Science and Technology, (2):29-31 (in Chinese with English abstract). | |
[6] | 林鹏, 沈瑞池, 卢昌义, 1994. 六种红树植物的抗寒特性研究[J]. 厦门大学学报(自然科学版), 33(2):249-252. |
LIN PENG, SHEN RUICHI, LU CHANGYI, 1994. The characteristics of chilling-resistance on six mangrove plants[J]. Journal of Xiamen University (Natural Science), 33(2):249-252 (in Chinese with English abstract). | |
[7] | 林鹏, 1997. 中国红树林生态系[M]. 北京: 科学出版社. |
LIN PENG, 1997. Mangrove ecosystem in China[M]. Beijing: Science Press (in Chinese). | |
[8] | 彭亚兰, 王友绍, 2014. 红树植物桐花树EF1A基因的克隆与表达分析[J]. 生态科学, 33(4):704-712. |
PENG YALAN, WANG YOUSHAO, 2014. Molecular characterization and expression analysis of elongation factor 1A from mangrove Aegiceras corniculatum[J]. Ecological Science, 33(4):704-712 (in Chinese with English abstract). | |
[9] | 王友绍, 2013. 红树林生态系统评价与修复技术[M]. 北京: 科学出版社. |
WANG YOUSHAO, 2013. Assessment and remediation techniques of mangrove ecosystems[M]. Beijing: Science Press (in Chinese). | |
[10] | 王友绍, 2019. 红树林分子生态学[M]. 北京: 科学出版社. |
WANG YOUSHAO, 2019. Molecular ecology of mangroves[M]. Beijing: Science Press (in Chinese). | |
[11] | 杨盛昌, 林鹏, 1998. 潮滩红树植物抗低温适应的生态学研究[J]. 植物生态学报, 22(1):60-67. |
YANG SHENGCHANG, LIN PENG, 1998. Ecological studies on the resistance and adaptation to cold of some tidal mangrove species in China[J]. Acta Phytoecologica Sinica, 22(1):60-67 (in Chinese with English abstract). | |
[12] | 叶笃正, 1999. 中国的全球变化与可持续发展研究[J]. 地球科学进展, 14(4):317-318. |
YE DUZHENG, 1999. Globle change and sustainable development research in China[J]. Advance in Earth Sciences, 14(4):317-318 (in Chinese). | |
[13] | 叶勇, 卢昌义, 郑逢中, 等, 2004. 模拟海平面上升对红树植物秋茄的影响[J]. 生态学报, 24(10):2238-2244. |
YE YONG, LU CHANGYI, ZHENG FENGZHONG, et al, 2004. Effects of simulated sea level rise on the mangrove Kandelia candel[J]. Acta Ecologica Sinica, 24(10):2238-2244 (in Chinese with English abstract). | |
[14] |
ALONGI D M, 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 76(1):1-13.
doi: 10.1016/j.ecss.2007.08.024 |
[15] |
ALONGI D M, 2015. The impact of climate change on mangrove forests[J]. Current Climate Change Reports, 1(1):30-39.
doi: 10.1007/s40641-015-0002-x |
[16] | ANDREWS T J, CLOUGH B F, MULLER G J, 1984. Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland[M]// TEAS H J. Physiology and management of mangroves. Dordrecht: Springer:15-23. |
[17] |
BALL M C, MUNNS R, 1992. Plant responses to salinity under elevated atmospheric concentrations of CO2[J]. Australian Journal of Botany, 40(5):515-525.
doi: 10.1071/BT9920515 |
[18] | BALL M C, COCHRANE M J, RAWSON H M, 1997. Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2[J]. Plant, Cell & Environment, 20(9):1158-1166. |
[19] |
BAZZAZ F A, 1990. The response of natural ecosystems to the rising global CO2 levels[J]. Annual Review of Ecology and Systematics, 21:167-196.
doi: 10.1146/annurev.es.21.110190.001123 |
[20] | BOUILLON S, BORGES A V, CASTAÑEDA-MOYA E, et al, 2008. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 22(2): GB2013. |
[21] |
CHEN GUANGCHENG, TAM N F Y, WONG Y S, et al, 2011. Effect of wastewater discharge on greenhouse gas fluxes from mangrove soils[J]. Atmospheric Environment, 45(5):1110-1115.
doi: 10.1016/j.atmosenv.2010.11.034 |
[22] | CHEN LUZHEN, WANG WENQING, LIN PENG, 2004. Influence of water logging time on the growth of Kandelia candel seedlings[J]. Acta Oceanologica Sinica, 23(1):149-158. |
[23] |
CHEN LUZHEN, TAM N F Y, HUANG JIANHUI, et al, 2008. Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China[J]. Estuarine, Coastal and Shelf Science, 79(4):644-652.
doi: 10.1016/j.ecss.2008.06.003 |
[24] |
CHENG HAO, LIU Y, TAM N F Y, et al, 2010. The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings[J]. Environmental Pollution, 158(5):1189-1196.
doi: 10.1016/j.envpol.2010.01.025 |
[25] |
CHENG HAO, WANG YOUSHAO, YE ZHIDONG, et al, 2012b. Influence of N deficiency and salinity on metal (Pb, Zn and Cu) accumulation and tolerance by Rhizophora stylosa in relation to root anatomy and permeability[J]. Environmental Pollution, 164:110-117.
doi: 10.1016/j.envpol.2012.01.034 |
[26] |
CHENG HAO, CHEN DANTING, TAM N F Y, et al, 2012a. Interactions among Fe2+, S2-, and Zn2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants[J]. Journal of Experimental Botany, 63(7):2619-2630.
doi: 10.1093/jxb/err440 |
[27] |
CHENG HAO, WANG YOUSHAO, FEI JIAO, et al, 2015. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient[J]. Ecotoxicology, 24(7-8):1659-1667.
doi: 10.1007/s10646-015-1474-0 |
[28] |
CHENG HAO, WU MEILIN, LI CHANGDA, et al, 2020. Dynamics of radial oxygen loss in mangroves subjected to waterlogging[J]. Ecotoxicology, 29(6):684-690.
doi: 10.1007/s10646-020-02221-4 |
[29] |
CHURCH J A, WHITE N J, COLEMAN R, et al, 2004. Estimates of the regional distribution of sea level rise over the 1950-2000 period[J]. Journal of Climate, 17(13):2609-2625.
doi: 10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2 |
[30] | CHURCH J A, WHITE N J, 2006. A 20th century acceleration in global sea-level rise[J]. Geophysical Research Letters, 33(1):L01602. |
[31] |
COSTANZA R, D'ARGE R, DE GROOT R, et al, 1997. The value of the world's ecosystem services and natural capital[J]. Nature, 387(6630):253-260.
doi: 10.1038/387253a0 |
[32] |
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al, 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 4(5):293-297.
doi: 10.1038/ngeo1123 |
[33] | DUKE N C, MEYNECKE J O, DITTMANN S, et al, 2007. A world without mangroves?[J]. Science, 317(5834):41-42. |
[34] | ELLISON JC, 1994. Climate change and sea level rise impacts on mangrove ecosystem. In: PEMETTA J (Ed.), Impacts of climate change on ecosystems and species: marine and coastal ecosystems. Gland. Switzerland: IUCN:11-30. |
[35] |
ELLISON A M, FARNSWORTH E J, 1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.)[J]. Oecologia, 112(4):435-446.
doi: 10.1007/s004420050330 |
[36] | ELLISON J C, STODDART D R, 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications[J]. Journal of Coastal Research, 7(1):151-165. |
[37] |
ESLAMI-ANDARGOLI L, DALE P E R, SIPE N, et al, 2010. Local and landscape effects on spatial patterns of mangrove forest during wetter and drier periods: Moreton Bay, Southeast Queensland, Australia[J]. Estuarine, Coastal and Shelf Science, 89(1):53-61.
doi: 10.1016/j.ecss.2010.05.011 |
[38] | FAO, 2007. The world's mangroves 1980-2005[R]. Rome: Food and Agriculture Organization of the United Nations. |
[39] | FARIDAH-HANUM I, LATIFF A, HAKEEM K R, et al, 2014. Mangrove ecosystems of Asia: status, challenges and management strategies[M]. New York: Springer-Verlag. |
[40] |
FARNSWORTH E J, ELLISON A M, GONG W K, 1996a. Elevated CO2 alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.)[J]. Oecologia, 108(4):599-609.
doi: 10.1007/BF00329032 |
[41] |
FARNSWORTH E J, ELLISON A M, 1996b. Scale-dependent spatial and temporal variability in biogeography of mangrove root epibiont communities[J]. Ecological Monographs, 66(1):45-66.
doi: 10.2307/2963480 |
[42] |
FEI JIAO, WANG YOUSHAO, ZHOU QIAO, et al, 2015a. Cloning and expression analysis of HSP70 gene from mangrove plant Kandelia obovata under cold stress[J]. Ecotoxicology, 24(7-8):1677-1685.
doi: 10.1007/s10646-015-1484-y |
[43] |
FEI JIAO, WANG YOUSHAO, JIANG ZHAOYU, et al, 2015b. Identification of cold tolerance genes from leaves of mangrove plant Kandelia obovata by suppression subtractive hybridization[J]. Ecotoxicology, 24(7-8):1686-1696.
doi: 10.1007/s10646-015-1486-9 |
[44] |
FEI JIAO, WANG YOUSHAO, CHENG HAO, et al, 2021 Cloning and characterization of KoOsmotin from mangrove plant Kandelia obovate under cold stress[J]. BMC Plant Biology, 21:10
doi: 10.1186/s12870-020-02746-0 |
[45] |
FIELD C D, 1995. Impact of expected climate change on mangroves[J]. Hydrobiologia, 295(1-3):75-81.
doi: 10.1007/BF00029113 |
[46] | FORSTER P C, RAMASWAMY P, ARTAXO T, et al, 2007. Changes in atmospheric constituents and in radiative forcing[M]//SOLOMON S, QIN D, MANNING M, et al. Climate change 2007: the physical science basis. Cambridge: Cambridge University Press. |
[47] |
FROMARD F, VEGA C, PROISY C, 2004. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys[J]. Marine Geology, 208(2-4):265-280.
doi: 10.1016/j.margeo.2004.04.018 |
[48] |
FU HAIFENG, ZHANG YAMIAN, AO XINGHAI, et al, 2019. High surface elevation gains and prediction of mangrove responses to sea-level rise based on dynamic surface elevation changes at Dongzhaigang Bay, China[J]. Geomorphology, 334:194-202.
doi: 10.1016/j.geomorph.2019.03.012 |
[49] |
FU XINHUI, HUANG YELIN, DENG SHULIN, et al, 2005. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts[J]. Plant Science, 169(1):147-154.
doi: 10.1016/j.plantsci.2005.03.009 |
[50] |
GILMAN E, ELLISON J, SAUNI JR I, et al, 2007. Trends in surface elevations of American Samoa mangroves[J]. Wetlands Ecology and Management, 15(5):391-404.
doi: 10.1007/s11273-007-9038-6 |
[51] |
GILMAN E L, ELLISON J, DUKE N C, et al, 2008. Threats to mangroves from climate change and adaptation options: a review[J]. Aquatic Botany, 89(2):237-250.
doi: 10.1016/j.aquabot.2007.12.009 |
[52] |
GUAN GUIFANG, WANG YOUSHAO, CHENG HAO, et al, 2015. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata[J]. Ecotoxicology, 24(7-8):1668-1676.
doi: 10.1007/s10646-015-1470-4 |
[53] |
HEIMANN M, REICHSTEIN M, 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 451(7176):289-292.
doi: 10.1038/nature06591 |
[54] |
HOFFMANN A A, SGRÒ C M, 2011. Climate change and evolutionary adaptation[J]. Nature, 470(7335):479-485.
doi: 10.1038/nature09670 |
[55] |
HUANG GUOYONG, WANG YOUSHAO, 2009. Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress[J]. Chemosphere, 77(7):1026-1029.
doi: 10.1016/j.chemosphere.2009.07.073 |
[56] |
HUANG GUOYONG, WANG YOUSHAO, 2010a. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress[J]. Aquatic Toxicology, 99(1):86-92.
doi: 10.1016/j.aquatox.2010.04.004 |
[57] |
HUANG GUOYONG, WANG YOUSHAO, 2010b. Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals[J]. Journal of Hazardous Materials, 182(1-3):848-854.
doi: 10.1016/j.jhazmat.2010.06.121 |
[58] |
HUANG GUOYONG, WANG YOUSHAO, YING GUANGGUO, 2011. Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability[J]. Journal of Experimental Marine Biology and Ecology, 405(1-2):128-132.
doi: 10.1016/j.jembe.2011.05.034 |
[59] |
HUANG GTOYONG, WANG YOUSHAO, YING GUANGGUO, et al, 2012. Analysis of type 2 metallothionein gene from mangrove species (Kandelia candel)[J]. Trees: Structure and Function, 26(5):1537-1544.
doi: 10.1007/s00468-012-0727-2 |
[60] |
KAO WENYUAN, SHIH C N, TSAI T, 2004. Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina[J]. Tree Physiology, 24(7):859-864.
doi: 10.1093/treephys/24.7.859 |
[61] |
KERR R A, 2007. Global warming is changing the world[J]. Science, 316(5822):188-190.
doi: 10.1126/science.316.5822.188 |
[62] |
KRAUSS K W, MCKEE K L, LOVELOCK C E, et al, 2014. How mangrove forests adjust to rising sea level[J]. New Phytologist, 202(1):19-34.
doi: 10.1111/nph.2014.202.issue-1 |
[63] |
KRISTENSEN E, BOUILLON S, DITTMAR T, et al, 2008. Organic carbon dynamics in mangrove ecosystems: a review[J]. Aquatic Botany, 89(2):201-219.
doi: 10.1016/j.aquabot.2007.12.005 |
[64] |
LIU JIN, WANG YOUSHAO, CHENG HAO, 2020a. Molecular cloning and expression of AmCDPK from mangrove Avicennia marina under elevated temperature[J]. Ecotoxicology, 29(6):707-717.
doi: 10.1007/s10646-020-02204-5 |
[65] |
LIU JIN, WANG YOUSHAO, 2020b. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress[J]. Ecotoxicology, 29(6):698-706.
doi: 10.1007/s10646-020-02198-0 |
[66] |
LOARIE S R, DUFFY P B, HAMILTON H, et al, 2009. The velocity of climate change[J]. Nature, 462(7276):1052-1055.
doi: 10.1038/nature08649 |
[67] | LOVELOCK C E, ELLISON J C, 2007. Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change[M] //JOHNSON J E, MARSHALL P A. Climate change and the great barrier reef: a vulnerability assessment. Australia: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: 237-269. |
[68] |
LOVELOCK C E, BENNION V, GRINHAM A, et al, 2011a. The Role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia[J]. Ecosystems, 14(5):745-757.
doi: 10.1007/s10021-011-9443-9 |
[69] |
LOVELOCK C E, FELLER I C, ADAME M F, et al, 2011b. Intense storms and the delivery of materials that relieve nutrient limitations in mangroves of an arid zone estuary[J]. Functional Plant Biology, 38(6):514-522.
doi: 10.1071/FP11027 |
[70] |
MARKLEY J L, MCMILLAN C, THOMPSON JR G A, 1992. Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama[J]. Canadian Journal of Botany, 60(12):2704-2715.
doi: 10.1139/b82-330 |
[71] | MCKEE K, ROGERS K, SAINTILAN N, 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level[M] //MIDDLETON B A. Global change and the function and distribution of wetlands. Dordrecht:Springer:63-96. |
[72] |
MCKEE K L, CAHOON D R, FELLER I C, 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation[J]. Global Ecology and Biogeography, 16(5):545-556.
doi: 10.1111/geb.2007.16.issue-5 |
[73] | NELLEMAN C, CORCORAN E, DUARTE C M (Eds), et al, 2009. Blue carbon[M]. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, www. grida.no. |
[74] | PARKINSON R W, DELAUNE R D, WHITE J R, 1994. Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region[J]. Journal of Coastal Research, 10(4):1077-1086. |
[75] | PEARSON H, 2005. Scientists seek action to fix Asia’s ravaged ecosystems[J]. Nature, 433(7022):94. |
[76] |
PENG YALAN, WANG YOUSHAO, CHENG HAO, et al, 2013. Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina[J]. Aquatic Toxicology, 140-141:68-76.
doi: 10.1016/j.aquatox.2013.05.014 |
[77] |
PENG YALAN, WANG YOUSHAO, CHENG HAO, et al, 2015a. Characterization and expression analysis of a gene encoding CBF/DREB1 transcription factor from mangrove Aegiceras corniculatum[J]. Ecotoxicology, 24(7-8):1733-1743.
doi: 10.1007/s10646-015-1485-x |
[78] |
PENG YALAN, WANG YOUSHAO, FEI JIAO, et al, 2015b. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress[J]. Ecotoxicology, 24(7-8):1722-1732.
doi: 10.1007/s10646-015-1488-7 |
[79] |
PENG YALAN, WANG YOUSHAO, GU JIDONG, 2015c. Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses[J]. Ecotoxicology, 24(7-8):1714-1721.
doi: 10.1007/s10646-015-1487-8 |
[80] |
PENG YALAN, WANG YOUSHAO, FEI JIAO, et al, 2020a. Isolation and expression analysis of two novel C-repeat binding factor (CBF) genes involved in plant growth and abiotic stress response in mangrove Kandelia obovata[J]. Ecotoxicology, 29(6):718-725.
doi: 10.1007/s10646-020-02219-y |
[81] |
PENG YALAN, WANG YOUSHAO, FEI JIAO, et al, 2020b. Isolation and expression analysis of a CBF transcriptional factor gene from the mangrove Bruguiera gymnorrhiza[J]. Ecotoxicology, 29(6):726-735.
doi: 10.1007/s10646-020-02215-2 |
[82] |
PICKENS C N, HESTER M W, 2011. Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion[J]. Estuaries and Coasts, 34(4):824-830.
doi: 10.1007/s12237-010-9358-2 |
[83] | RECORD S, CHARNEY N D, ZAKARIA R M, et al, 2013. Projecting global mangrove species and community distributions under climate change[J]. Ecosphere, 4(3):1-23. |
[84] |
SIEGERT F, RUECKER G, HINRICHS A, 2001. Increased damage from fires in logged forests during droughts caused by El Niño[J]. Nature, 414(6862):437-440.
doi: 10.1038/35106547 |
[85] | SMITH S M, SNEDAKER S C, 1995. Developmental responses of established red mangrove, Rhizophora mangle L., seedlings to relative levels of photosynthetically active and ultraviolet radiation[J]. Florida Scientist, 58(1):55-60. |
[86] |
SOARES M L G, ESTRADA G C D, FERNANDEZ V, et al, 2012. Southern limit of the Western South Atlantic mangroves: assessment of the potential effects of global warming from a biogeographical perspective[J]. Estuarine, Coastal and Shelf Science, 101:44-53.
doi: 10.1016/j.ecss.2012.02.018 |
[87] | SOLOMON S, QIN D, MANNING M, et al, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. |
[88] |
SONG HUI, WANG YOUSHAO, SUN CUICI, et al, 2011. Effects of polycyclic aromatic hydrocarbons exposure on antioxidant system activities and proline content in Kandelia candel[J]. Oceanological and Hydrobiological Studies, 40(3):9-18.
doi: 10.2478/s13545-011-0024-5 |
[89] |
SONG HUI, WANG YOUSHAO, SUN CUICI, et al, 2012. Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza[J]. Ecotoxicology, 21(6):1625-1632.
doi: 10.1007/s10646-012-0945-9 |
[90] | SPALDING M, KAINUMA M, COLLINS L, 2010. World atlas of mangroves[M]. London: Earthscan. |
[91] |
TANAKA S, IKEDA K, ONO M, et al, 2002. Isolation of several anti-stress genes from a mangrove plant Avicennia marina[J]. World Journal of Microbiology and Biotechnology, 18(8):801-804.
doi: 10.1023/A:1020485227270 |
[92] |
TEMMERMAN S, MEIRE P, BOUMA T J, et al, 2013. Ecosystem-based coastal defence in the face of global change[J]. Nature, 504(7478):79-83.
doi: 10.1038/nature12859 |
[93] |
TRIEST L, 2008. Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: a review[J]. Aquatic Botany, 89(2):138-154.
doi: 10.1016/j.aquabot.2007.12.013 |
[94] |
TURNER W R, OPPENHEIMER M, WILCOVE D S, 2009. A force to fight global warming[J]. Nature, 462(7271):278-279.
doi: 10.1038/462278a |
[95] | VAUGHAN N E, LENTON T M, 2011. A review of climate geoengineering proposals. Climatic Change, 109(3-4):745-790. |
[96] |
WANG LIYING, WANG YOUSHAO, CHENG HAO, et al, 2015a. Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress[J]. Ecotoxicology, 24(7-8):1705-1713.
doi: 10.1007/s10646-015-1502-0 |
[97] |
WANG LIYING, WANG YOUSHAO, ZHANG JINGPING, et al, 2015b. Molecular cloning of class III chitinase gene from Avicennia marina and its expression analysis in response to cadmium and lead stress[J]. Ecotoxicology, 24(7-8):1697-1704.
doi: 10.1007/s10646-015-1501-1 |
[98] |
WANG WENQING, XIAO YAN, CHEN LUZHEN, et al, 2007. Leaf anatomical responses to periodical waterlogging in simulated semidiurnal tides in mangrove Bruguiera gymnorrhiza seedlings[J]. Aquatic Botany, 86(3):223-228.
doi: 10.1016/j.aquabot.2006.10.003 |
[99] |
WANG YUTU, Wang YOUSHAO, WU MEILIN, et al, 2021 Assessing ecological health of mangrove ecosystems along South China Coast by the pressure-state-response (PSR) model[J]. Ecotoxicology, 30:622-631.
doi: 10.1007/s10646-021-02399-1 |
[100] |
ZHANG FENGQIN, WANG YOUSHAO, LOU ZHIPING, et al, 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 67(1):44-50.
doi: 10.1016/j.chemosphere.2006.10.007 |
[101] |
ZHANG FENGQIN, WANG YOUSHAO, SUN CUICI, et al, 2012. A novel metallothionein gene from a mangrove plant Kandelia candel[J]. Ecotoxicology, 21(6):1633-1641.
doi: 10.1007/s10646-012-0952-x |
[102] |
ZHANG ZHIHONG, ZHOU RENCHAO, TANG TIAN, et al, 2008. Genetic variation in central and peripheral populations of Excoecaria agallocha from Indo-West Pacific[J]. Aquatic Botany, 89(1):57-62.
doi: 10.1016/j.aquabot.2008.03.002 |
[1] | 吴鸿博, 罗锋, 陈治澎, 朱飞, 曾靖伟, 张弛, 李瑞杰. 红树林生态重建效果预测研究新模式[J]. 热带海洋学报, 2024, 43(4): 86-97. |
[2] | 郑法, 黄福林, 陈泽恒, 丁伟品. 基于LUCC和景观格局变化的广西山口红树林湿地动态研究[J]. 热带海洋学报, 2024, 43(4): 165-173. |
[3] | 周治刚, 岳文, 李辉权, 林阳阳. 树种类型和潮滩高程对广东湛江高桥红树林碳储量的影响[J]. 热带海洋学报, 2024, 43(2): 108-120. |
[4] | 申键, 简焯锴, 欧阳雪敏, 艾彬. 结合潮位校正的雷州半岛红树林湿地动态变迁遥感监测[J]. 热带海洋学报, 2024, 43(1): 137-153. |
[5] | 耿婉璐, 邢永泽, 张秋丰, 管卫兵. 广西北海红树林宜林滩涂大型底栖动物群落结构特征[J]. 热带海洋学报, 2024, 43(1): 107-115. |
[6] | 董俊德, 黄小芳, 龙爱民, 王友绍, 凌娟, 杨清松. 红树林固氮微生物及其生态功能研究进展[J]. 热带海洋学报, 2023, 42(4): 1-11. |
[7] | 梁寒峭, 陈文凤, 范益铠, 朱子冬, 马国需, 陈德力, 田婧. 红树林来源曲霉属和木霉属内生真菌次生代谢产物及活性研究进展[J]. 热带海洋学报, 2023, 42(4): 12-24. |
[8] | 张程飞, 任广波, 吴培强, 胡亚斌, 马毅, 阎宇, 张菁锐. 基于高分光学与全极化SAR的海南八门湾红树林种间分类方法[J]. 热带海洋学报, 2023, 42(2): 153-168. |
[9] | 周月月, 王友绍. 广东沿海红树林区水质变化特征与富营养状态评估[J]. 热带海洋学报, 2022, 41(6): 1-11. |
[10] | 吴伟志, 赵志霞, 杨升, 梁立成, 陈秋夏, 卢翔, 刘星, 张小伟. 浙江省红树林分布和造林成效分析[J]. 热带海洋学报, 2022, 41(6): 67-74. |
[11] | 郝露露, 柯明思, 朱奕秀, 许燕敏, 张颖, 郑春芳. 低温胁迫下红榄李(Lumnitzera littorea)DEAD-box RNA解旋酶基因的表达分析[J]. 热带海洋学报, 2022, 41(6): 44-55. |
[12] | 李华薇, 徐向荣. 中国典型红树林沉积物中多溴联苯醚和替代型溴系阻燃剂污染特征[J]. 热带海洋学报, 2022, 41(1): 117-130. |
[13] | 戴志军, 周晓妍, 王杰, 胡宝清. 红树林潮滩沉积动力研究进展与展望[J]. 热带海洋学报, 2021, 40(3): 69-75. |
[14] | 董迪, 曾纪胜, 魏征, 严金辉. 联合星载光学和SAR影像的漳江口红树林与互花米草遥感监测[J]. 热带海洋学报, 2020, 39(2): 107-117. |
[15] | 李小维, 黄子眉, 陈剑锋, 王欣, 韦江玲. 基于VSD模型的铁山港湾红树林生态系统脆弱性初步评价[J]. 热带海洋学报, 2018, 37(2): 47-54. |
|