Journal of Tropical Oceanography ›› 2017, Vol. 36 ›› Issue (6): 71-81.doi: 10.11978/2017010CSTR: 32234.14.2017010
Special Issue: 海上丝绸之路专题
Previous Articles Next Articles
Jiazheng ZHANG1(), Jianping ZHOU2, Minghui ZHAO1(
), Xuelin QIU1
Received:
2017-01-19
Revised:
2017-04-22
Online:
2017-11-30
Published:
2018-01-18
About author:
Author:QIU Chunhua.E-mail:<email> qiuchh3@mail. sysu.edu.cn</email>
Supported by:
CLC Number:
Jiazheng ZHANG, Jianping ZHOU, Minghui ZHAO, Xuelin QIU. Progress and prospect of anisotropic study of hydrothermal field (49º39'E) on the Southwest Indian Ridge[J].Journal of Tropical Oceanography, 2017, 36(6): 71-81.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 1
Experiment of active source oceanic bottom seismometer (OBS) and velocity modeling at the Dragon Flag Hydrothermal Field (DFHF). (a) Multi-beam bathymetry map and active-source seismic survey at the DFHF. Origin of local coordinate system is at (49#cod#x000b0;39#cod#x02032;E, 37#cod#x000b0;46#cod#x02032;S), with the X-axis oriented along 82#cod#x000b0;. Red star shows the location of active vents. Black circles with white numbers and thin black dotted lines show the locations of OBSs and shots, respectively. Red line of Y3Y4 shows the location of the profile in (b). Thick white lines with #28 (in red) and #29 (in black) indicate the neo-volcanic ridges (NVRs) for segments 28 and 29 (defined by Cannat et al, 1999). Thick dashed lines indicate the non-transform discontinuities (NTDs). Red star in the inset at the top-right corner shows the location of the seismic survey area. The inset at the bottom-right corner shows the corrugated surface of Dragon Flag oceanic core complex (OCC). (b) The final model of P-wave crustal structure along Profile Y3Y4. Red star is the horizontal projection of active vents. The inverted triangles indicate locations of OBS. Red lines on the Moho mean there are PmP rays being covered. (c) The interpreted geological model. BA: Breakaway; T: Termination; and ODF: Oceanic Detachment Fault (Zhang et al, 2013)"
Fig. 2
Experiment of passive source OBS and records of microseismicities at the DFHF. (a) Red, pink and white triangles represent the locations of imported, domestic and lost OBS, respectively. Red star shows the location of active vents. (b) Filtered four-channel seismic records of OBS B65 and B71 for vertical channel (labeled V), two horizontal (H1 and H2) seismometer channels and hydrophone channel (H). The traces are scaled to equal maximum amplitude and band-pass filtered of 3~20 Hz. The start time of trace was 23:55:15.015 on Feb 18th, 2015. P waves, S waves and PwP phase are indicated by solid red line, dashed red line and dotted gray line, respectively"
Fig. 3
Travel-time residuals plotted against their source-receiver azimuths. (a) A total of 65634 pair travel-time residuals plotted against their source-receiver azimuths. The 0#cod#x000b0; azimuth corresponds to the general trend of NVR (#28), and n is the number of travel-time residuals. (b) Travel-time residuals binned and plotted against their source-receiver azimuth. The black line shows best-fitting curve of cos2#cod#x003b8;. The circles show the mean residual in each 20#cod#x000b0; bin, and the bars indicate the ranges of a standard deviation. Fast direction is indicated by the triangle with standard error bar located below the upper horizontal axis, and n is the number of bins"
Fig. 4
Theoretical diagram of anisotropy inverted from travel-time analysis. (a) Top view for anisotropic medium. Black dashed lines represent dry cracks, and thin dashed gray lines represent saturated cracks. Black lines and arrows represent axis and spreading direction. (b) Side view for anisotropic medium. Thin dashed gray lines represent saturated cracks. According to different penetrating depths of shot rays, the anisotropic characteristics from different depths can be obtained. (c) The relationship between travel-time residuals and corresponding azimuths. Black, blue and red curves indicate the relationship of cos2#cod#x003b8;, cos4#cod#x003b8; and simultaneous cos2#cod#x003b8; and cos4#cod#x003b8;, respectively. Black line means larger percentage of dry cracks, and shows closer relationship with cos2#cod#x003b8;. Blue dashed line means larger percentage of saturated cracks, and shows closer relationship with cos4#cod#x003b8;. Red curve means equivalent effects of dry and saturated cracks"
Fig. 5
Result of azimuthally seismic anisotropy technique on the western limb of the 9#cod#x000b0;N overlapping spreading center on the East Pacific Rise (EPR) (Tong et al, 2004). (a) Cosine function relationship between travel-time residuals and their azimuths; (b) estimated percentage anisotropy; (c) geometric configuration of along-axis hydrothermal circulation (arrow) consistent with crack structures inferred from anisotropic study"
Fig. 6
Shear-wave splitting occurred when a shear wave traveled through an anisotropic medium (W#cod#x000fc;stefeld et al, 2008). When incident shear wave arrived at an anisotropic medium, it split into two shear waves of perpendicular polarization along seismic fast and slow directions, respectively. Traveling through anisotropic medium, the two waves accumulated a delay time #cod#x003b4;t. Shear-wave splitting techniques inverted for #cod#x003b4;t and the fast polarization direction"
Fig. 7
Result of shear-wave splitting at the axis of Mid-Atlantic Ridge (MAR) near 35#cod#x000b0;N (Barclay et al, 2003). (a) Rose histograms of fast polarization directions for six OBSs. (b) Examples of shear-wave splitting in horizontal particle motions. The shear wave arrivals are shown for earthquakes at four different OBSs (52, 56, 60, and 63), with fast wave moving in a nearly NS direction and slow wave moving in a nearly EW direction. Numbers in parentheses are the earthquake epicenters in minutes of latitude and longitude, respectively. Each trace was 203ms long, with sample points (dots) every 7.8125ms. The open circle is the origin of particle motion"
[1] | 常利军, 王椿镛, 丁志峰, 等, 2008. 青藏高原东北缘上地幔各向异性研究[J]. 地球物理学报, 51(2): 431-438 |
CHANG LIJUN, WANG CHUNYONG, DING ZHIFENG, et al, 2008. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 51(2): 431-438 (in Chinese). | |
[2] | 常利军, 王椿镛, 丁志峰, 等, 2015. 喜马拉雅东构造结及周边地区上地幔各向异性[J]. 中国科学: 地球科学, 58(10): 1872-1882 |
CHANG LIJUN, WANG CHUNYONG, DING ZHIFENG, et al, 2015. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis[J]. Science China Earth Sciences, 58(10): 1872-1882 (in Chinese). | |
[3] | 高原, 滕吉文, 2005. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展, 20(1): 180-185 |
GAO YUAN, TENG JIWEN, 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics, 20(1): 180-185 (in Chinese). | |
[4] | 韩宗珠, 张贺, 范德江, 等, 2012. 西南印度洋中脊50#cod#x000b0;E基性超基性岩石地球化学特征及其成因初探[J]. 中国海洋大学学报, 42(9): 69-76 |
HAN ZONGZHU, ZHANG HE, FAN DEJIANG, et al, 2012. The characteristic of geochemistry and genesis for mafic and utrlmafic rocks from the 50#cod#x000b0;E of southwest Indian Ridge[J]. Periodical of Ocean University of China, 42(9): 69-76 (in Chinese). | |
[5] | 姜枚, 许志琴, HIRN A, 等, 2001. 青藏高原及其部分邻区地震各向异性和上地幔特征[J]. 地球学报, 22(2): 111-116 |
JIANG MEI, XU ZHIQIN, HIRN A, et al, 2001. Teleseimic anisotropy and corresponding features of the upper mantle in Tibet plateau and its neighboring areas[J]. Acta Geoscientia Sinica, 22(2): 111-116 (in Chinese). | |
[6] | 李三忠, 索艳慧, 余珊, 等, 2015. 西南印度洋构造地貌与构造过程[J]. 大地构造与成矿学, 39(1): 15-29 |
LI SANZHONG, SUO YANHUI, YU SHAN, et al, 2015. Morphotectonics and tectonic processes of the southwest Indian Ocean[J]. Geotectonica et Metallogenia, 39(1): 15-29 (in Chinese). | |
[7] | 李小虎, 初凤友, 雷吉江, 等, 2008. 慢速-超慢速扩张西南印度洋中脊研究进展[J]. 地球科学进展, 23(6): 595-603 |
LI XIAOHU, CHU FENGYOU, LEI JIJIANG, et al, 2008. Advances in slow-ultraslow-spreading southwest Indian Ridge[J]. Advances in Earth Science, 23(6): 595-603 (in Chinese). | |
[8] | 梁裕扬, 李家彪, 李守军, 等, 2014. 西南印度洋脊中段Indomed-Gallieni洋中脊岩浆-构造动力模式[J]. 地球物理学报, 57(9): 2993-3005 |
LIANG YUYANG, LI JIABIAO, LI SHOUJUN, et al, 2014. The magmato-tectonic dynamic model for the Indomed-Gallieni segment of the central Southwest Indian Ridge[J]. Chinese Journal of Geophysics, 57(9): 2993-3005 (in Chinese). | |
[9] | 廖武林, 丁志峰, 曾融生, 等, 2007. 喜马拉雅地区S波分裂研究[J]. 地球物理学报, 50(5): 1437-1447 |
LIAO WULIN, DING ZHIFENG, ZENG RONGSHENG, et al, 2007. Shear wave splitting in Himalaya[J]. Chinese Journal of Geophysics, 50(5): 1437-1447 (in Chinese). | |
[10] | 吕庆田, 许志琴, 1997. 由震源机制和地震波各向异性探讨青藏高原岩石圈变形[J]. 地质论评, 43(4): 337-346 |
LV QINGTIAN, XU ZHIQIN, 1997. The deformation characteres of Qinghai-Xizang lithosphere: implication from earthquake mechanism and seismic anisotropy[J]. Geological Review, 43(4): 337-346 (in Chinese). | |
[11] | 石玉涛, 2014. 南北地震带南段地震各向异性与介质各向异性特征数值模拟初步研究[D]. 北京: 中国地震局地球物理研究所 |
SHI YUTAO, 2014. Seismic anisotropy beneath the southern part of North-South Seismic Belt and preliminary study on the numerical simulation of dielectric anisotropy features[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese). | |
[12] | 太龄雪, 高原, 刘庚, 等, 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性: 第一期观测资料的剪切波分裂特征[J]. 地球物理学报, 58(11): 4079-4091 |
TAI LINGXUE, GAO YUAN, LIU GENG, et al, 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data: shear-wave splitting from temporary observations of the first phase[J]. Chinese Journal of Geophysics, 58(11): 4079-4091 (in Chinese). | |
[13] | 陶春辉, 李怀明, 金肖兵, 等, 2014. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 59(19): 2266-2276 |
TAO CHUNHUI, LI HUAIMING, JIN XIAOBING, et al, 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 59(19): 2266-2276 (in Chinese). | |
[14] | 王椿镛, 常利军, 吕智勇, 等, 2007. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J]. 中国科学 D辑: 地球科学, 50(8): 1150-1160 |
WANG CHUNYONG, CHANG LIJUN, L#cod#x000dc; ZHIYONG, et al, 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern[J]. Science in China Series D: Earth Sciences, 50(8): 1150-1160 (in Chinese). | |
[15] | 王琼, 高原, 石玉涛, 等, 2013. 青藏高原东北缘上地幔地震各向异性: 来自SKS、PKS和SKKS震相分裂的证据[J]. 地球物理学报, 56(3): 892-905 |
WANG QIONG, GAO YUAN, SHI YUTAO, et al, 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS[J]. Chinese Journal of Geophysics, 56(3): 892-905 (in Chinese). | |
[16] | 吴晶, 高原, 陈运泰, 等, 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报, 50(1): 209-220 |
WU JING, GAO YUAN, CHEN YUNTAI, et al, 2007. Seismic anisotropy in the crust in northwestern capital area of China[J]. Chinese Journal of Geophysics, 50(1): 209-220 (in Chinese). | |
[17] | 于淼, 苏新, 陶春辉, 等, 2013. 西南印度洋中脊49.6#cod#x000b0;E和50.5#cod#x000b0;E区玄武岩岩石学及元素地球化学特征[J]. 现代地质, 27(3): 497-508 |
YU MIAO, SU XIN, TAO CHUNHUI, et al, 2013. Petrological and geochemical features of basalts at 49.6#cod#x000b0;E and 50.5#cod#x000b0;E hydrothermal fields along the southwest Indian Ridge[J]. Geoscience, 27(3): 497-508 (in Chinese). | |
[18] | 张洪双, 滕吉文, 田小波,等, 2013. 青藏高原东北缘岩石圈厚度与上地幔各向异性[J]. 地球物理学报, 56(2): 459-471 |
ZHANG HONGSHUANG, TENG JIWEN, TIAN XIAOBO, et al, 2013. Lithospheric thickness and upper mantle anisotropy beneath the northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 56(2): 459-471 (in Chinese). | |
[19] | 张涛, 2010. 西南印度洋洋中脊及其与热点交互作用方式的地球物理研究[D]. 北京: 中国科学院研究生院. |
ZHANG TAO, 2010. Magmatism and tectonic processes in the area of hydrothermal vent on southwest Indian Ridge[D]. Beijing: Graduate University of the Chinese Academy of Sciences (in Chinese). | |
[20] | 张涛, 林间, 高金耀, 2011. 90Ma以来热点与西南印度洋中脊的交互作用: 海台与板内海山的形成[J]. 中国科学: 地球科学, 54(8): 1177-1188 |
ZHANG TAO, LIN JIAN, GAO JINYAO, 2011. Interactions between hotspots and the southwest Indian Ridge during the last 90 Ma: implications on the formation of oceanic plateaus and intra-plate seamounts[J]. Science China Earth Sciences, 54(8): 1177-1188 (in Chinese). | |
[21] | 张涛, LIN JIAN, 高金耀, 2013. 西南印度洋中脊热液区的岩浆活动与构造特征[J]. 中国科学: 地球科学, 56(12): 2186-2197 |
ZHANG TAO, LIN JIAN, GAO JINYAO, 2013. Magmatism and tectonic processes in Area A hydrothermal vent on the southwest Indian Ridge[J]. Science China Earth Sciences, 56(12): 2186-2197 (in Chinese). | |
[22] | 赵明辉, 丘学林, 李家彪, 等, 2010. 慢速、超慢速扩张洋中脊三维地震结构研究进展与展望[J]. 热带海洋学报, 29(6): 1-7 |
ZHAO MINGHUI, QIU XUELIN, LI JIABIAO, et al, 2010. Research development and prospect on three-dimensional seismic structures of slow and ultraslow spreading ocean ridges[J]. Journal of Tropical Oceanography, 29(6): 1-7 (in Chinese). | |
[23] | 郑斯华, 高原, 1994. 中国大陆岩石层的方位各向异性[J]. 地震学报, 16(2): 131-140 |
ZHENG SIHUA, GAO YUAN, 1994. Azimuthal anisotropy of Chinese continental lithosphere[J]. Acta Seismologica Sinica, 16(2): 131-140 (in Chinese). | |
[24] | BARCLAY A H, TOOMEY D R, 2003. Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35#cod#x000b0;N[J]. Journal of Geophysical Research: Solid Earth, 108(B8): 2378. |
[25] | CANNAT M, ROMMEVAUX-JESTIN C, SAUTER D, et al, 1999. Formation of the axial relief at the very slow spreading southwest Indian Ridge (49#cod#x000b0; to 69#cod#x000b0;E)[J]. Journal of Geophysical Research: Solid Earth, 104(B10): 22825-22843. |
[26] | CANNAT M, SAUTER D, MENDEL V, et al, 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J]. Geology, 34(7): 605-608. |
[27] | CHUNG T W, 1992. A quantitative study of seismic anisotropy in the Yamato Basin, the southeastern Japan Sea, from refraction data collected by an ocean bottom seismographic array[J]. Geophysical Journal International, 109(3): 620-638. |
[28] | CRAMPIN S, BMFORD D, 1977. Inversion of P-wave velocity anisotropy[J]. Geophysical Journal International, 49(1): 123-132. |
[29] | DAUTEUIL O, BRUN J P, 1993. Oblique rifting in a slow- spreading ridge[J]. Nature, 361(6408): 145-148. |
[30] | DICK H J B, LIN J, SCHOUTEN H, 2003. An ultraslow-spreading class of ocean ridge[J]. Nature, 426(6965): 405-412. |
[31] | DUNN R A, TOOMEY D R, 2001. Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9#cod#x000b0;30#cod#x02032;N)[J]. Earth and Planetary Science Letters, 189(1-2): 9-17. |
[32] | DUNN R A, LEKIC V, DETRICK R S, et al, 2005. Three- dimensional seismic structure of the Mid-Atlantic Ridge (35#cod#x000b0;N): Evidence for focused melt supply and lower crustal dike injection[J]. Journal of Geophysical Research, 110(B9): 1-17. |
[33] | FLESCH L M, HOLT W E, SILVER P G, et al, 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data[J]. Earth #cod#x00026; Planetary Science Letters, 238(1-2): 248-268. |
[34] | HAYMAN N W, KARSON J A, 2007. Faults and damage zones in fast-spread crust exposed on the north wall of the Hess Deep Rift: conduits and seals in seafloor hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 8(10): Q10002. |
[35] | HESS H H, 1964. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature, 203(4945): 629-631. |
[36] | HIRN A, JIANG M, SAPIN M, et al, 1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet[J]. Nature, 375(6532): 571-574. |
[37] | HUANG W C, NI J F, TILMANN F, et al, 2000. Seismic polarization anisotropy beneath the central Tibetan Plateau[J]. Journal of Geophysical Research Solid Earth, 105(B12): 27979-27989. |
[38] | HUDSON J A, 1981. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International, 64(1): 133-150. |
[39] | KLEINROCK M C, HUMPHRIS S E, 1996. Structural control on sea-floor hydrothermal activity at the TAG active mound[J]. Nature, 382(6587): 149-153. |
[40] | MCNAMARA D E, OWENS T J, SILVER P G, et al, 1994. Shear wave anisotropy beneath the Tibetan Plateau[J]. Journal of Geophysical Research Solid Earth, 99(B7): 13655-13665. |
[41] | MENDEL V, SAUTER D, ROMMEVAUX-JESTIN C, et al, 2003. Magmato-tectonic cyclicity at the ultra-slow spreading southwest Indian Ridge: evidence from variations of axial volcanic ridge morphology and abyssal hills pattern[J]. Geochemistry, Geophysics, Geosystems, 4(5): 9102. |
[42] | SINGH A, EKEN T, MOHANTY D D, et al, 2016. Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves[J]. Physics of the Earth and Planetary Interiors, 250: 1-11. |
[43] | SINGH S C, CRAWFORD W C, CARTON H, et al, 2006. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field[J]. Nature, 442(7106): 1029-1032. |
[44] | TAO CHUNHUI, LIN JIAN, GUO SHIQIN, et al, 2012. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian Ridge[J]. Geology, 40(1): 47-50. |
[45] | TONG C H, WHITE R S, WARNER M R, et al, 2004. Effects of tectonism and magmatism on crack structure in oceanic crust: a seismic anisotropy study[J]. Geology, 32(1): 25-28. |
[46] | TONG C H, LANA C, WHITE R S, et al, 2005. Subsurface tectonic structure between overlapping mid-ocean ridge segments[J]. Geology, 33(5): 409-412. |
[47] | WHITE R S, WHITMARSH R B, 1984. An investigation of seismic anisotropy due to cracks in the upper oceanic crust at 45#cod#x000b0;N, Mid-Atlantic Ridge[J]. Geophysical Journal International, 79(2): 439-467. |
[48] | WRIGHT D J, HAYMON R M, MACDONALD K C, 1995. Breaking new ground: estimates of crack depth along the axial zone of the East Pacific Rise (9#cod#x000b0;12#cod#x02032;-54#cod#x02032;N)[J]. Earth and Planetary Science Letters, 134(3-4): 441-457. |
[49] | W#cod#x000dc;STEFELD A, BOKELMANN G, ZAROLI C, et al, 2008. SplitLab: a shear-wave splitting environment in Matlab[J]. Computers #cod#x00026; Geosciences, 34(5): 515-528. |
[50] | ZHANG JIAZHENG, ZHAO MINGHUI, QIU XUELIN, et al, 2013. Seismic phases from the Moho and its implication on the ultraslow spreading ridge[J]. Acta Oceanologica Sinica, 32(12): 75-86. |
[51] | ZHAO MINGHUI, QIU XUELIN, LI JIABIAO, et al, 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading southwest Indian Ridge (49#cod#x000b0;39#cod#x02032;E)[J]. Geochemistry, Geophysics, Geosystems, 14(10): 4544-4563. |
[52] | ZHOU HUAIYANG, DICK H J B, 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 494(7436): 195-200. |
[53] | ZHU JIAN, LIN JIAN, CHEN YONGSHUN, et al, 2010. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the southwest Indian Ridge[J]. Geophysical Research Letters, 37(18): L18303. |
[1] | CAO Lingmin, ZHAO Liang, ZHAO Minghui, QIU Xuelin, YUAN Huaiyu. Anisotropic structure in the back arc region, Taranaki, New Zealand* [J]. Journal of Tropical Oceanography, 2023, 42(1): 124-134. |
|