[1] |
黄邦钦, 刘媛, 陈纪新, 等, 2006. 东海、黄海浮游植物生物量的粒级结构及时空分布[J]. 海洋学报, 28(2): 156-164.
|
|
HUANG BANQIN, LIU YUAN, CHEN JIXIN, et al, 2006. Temporal and spatial distribution of size-fractionized phytoplankton biomass in East China Sea and Huanghai Sea[J]. Acta Oceanologica Sinica, 28(2): 156-164 (in Chinese with English abstract).
|
[2] |
丘仲锋, 孙德勇, 王胜强, 等, 2016. 海洋浮游植物粒径等级遥感研究现状与展望[J]. 广西科学, 23(6): 492-498.
|
|
QIU ZHONGFENG, SUN DEYONG, WANG SHENGQIANG, et al, 2016. Research status and prospect of remote sensing of phytoplankton size classes in marine waters[J]. Guangxi Sciences, 23(6): 492-498 (in Chinese with English abstract).
|
[3] |
孙军, 刘东艳, 钟华, 等, 2003. 浮游植物粒级研究方法的比较[J]. 青岛海洋大学学报, 33(6): 917-924.
|
|
SUN JUN, LIU DONGYAN, ZHONG HUA, et al, 2003. A comparison of three methods for studying phytoplankton size fraction[J]. Journal of Ocean University of Qingdao, 33(6): 917-924 (in Chinese with English abstract).
|
[4] |
王桂芬, 曹文熙, 周雯, 等, 2010. 基于南海北部海区浮游植物吸收光谱斜率变化的粒级结构反演[J]. 热带海洋学报, 29(2): 25-32.
|
|
WANG GUIFEN, CAO WENXI, ZHOU WEN, et al, 2010. Retrieval of phytoplankton size structure based on the spectral slope of phytoplankton absorption in the northern South China Sea[J]. Journal of Tropical Oceanography, 29(2): 25-32 (in Chinese with English abstract).
|
[5] |
王桂芬, 周雯, 林俊芳, 等, 2014. 南海北部海区浮游植物粒级结构生物光学反演模型的验证与评价[J]. 激光生物学报, 23(6): 502-515.
|
|
WANG GUIFEN, ZHOU WEN, LIN JUNFANG, et al, 2014. Validation and assessment on the bio-optical models for retrieving phytoplankton size structure in the northern South China Sea[J]. Acta Laser Biology Sinica, 23(6): 502-515 (in Chinese with English abstract).
|
[6] |
BABIN M, STRAMSKI D, FERRARI G M, et al, 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe[J]. Journal of Geophysical Research: Oceans, 108(C7): 3211.
|
[7] |
BOSS E, PICHERAL M, LEEUW T, et al, 2013. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition[J]. Methods in Oceanography, 7: 52-62.
|
[8] |
BRACHER A, TAYLOR M H, TAYLOR B, et al, 2015. Using empirical orthogonal functions derived from remote-sensing reflectance for the prediction of phytoplankton pigment concentrations[J]. Ocean Science, 11(1): 139-158.
|
[9] |
BREWIN R J W, DALL'OLMO G, PARDO S, et al, 2016. Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals[J]. Remote Sensing of Environment, 183: 82-97.
|
[10] |
BREWIN R J W, SATHYENDRANATH S, HIRATA T, et al, 2010. A three-component model of phytoplankton size class for the Atlantic Ocean[J]. Ecological Modelling, 221(11): 1472-1483.
|
[11] |
BREWIN R J W, DEVRED E, SATHYENDRANATH S, et al, 2011. Model of phytoplankton absorption based on three size classes[J]. Applied Optics, 50(22): 4535-4549.
|
[12] |
BREWIN R J W, SATHYENDRANATH S, MÜLLER D, et al, 2015. The ocean colour climate change initiative: III. A round-robin comparison on in-water bio-optical algorithms[J]. Remote Sensing of Environment, 162: 271-294.
|
[13] |
BRICAUD A, STRAMSKI D, 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea[J]. Limnology and Oceanography, 35(3): 562-582.
|
[14] |
CATLETT D, SIEGEL D A, 2018. Phytoplankton pigment communities can be modeled using unique relationships with spectral absorption signatures in a dynamic coastal environment[J]. Journal of Geophysical Research: Oceans, 123(1): 246-264.
|
[15] |
CHASE A, BOSS E, ZANEVELD R, et al, 2013. Decomposition of in situ particulate absorption spectra[J]. Methods in Oceanography, 7: 110-124.
|
[16] |
CHASE A P, BOSS E, CETINIĆ I, et al, 2017. Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra: toward a global algorithm[J]. Journal of Geophysical Research: Oceans, 122(12): 9725-9743.
|
[17] |
DALL'OLMO G, WESTBERRY T K, BEHRENFELD M J, et al, 2009. Significant contribution of large particles to optical backscattering in the open ocean[J]. Biogeosciences, 6(6): 947-967.
|
[18] |
GIBB S W, BARLOW R G, CUMMINGS D G, et al, 2000. Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50◦N and 50◦S[J]. Progress in Oceanography, 45(3-4): 339-368.
|
[19] |
HOEPFFNER N, SATHYENDRANATH S, 1991. Effect of pigment composition on absorption properties of phytoplankton[J]. Marine Ecology Progress Series, 73: 11-23.
|
[20] |
HOEPFFNER N, SATHYENDRANATH S, 1993. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter[J]. Journal of Geophysical Research: Oceans, 98(C12): 22789-22803.
|
[21] |
IOCCG, 2014. Phytoplankton functional types from space[R]//SATHYENDRANATH S. Reports of the International Ocean-Colour Coordinating Group, No. 15. Dartmouth, Canada: IOCCG.
|
[22] |
LIN JUNFANG, CAO WENXI, WANG GUIFEN, et al, 2014. Inversion of bio-optical properties in the coastal upwelling waters of the northern South China Sea[J]. Continental Shelf Research, 2014, 85: 73-84.
|
[23] |
MOUW C B, CIOCHETTO A B, GRUNERT B, et al, 2017. Expanding understanding of optical variability in Lake Superior with a 4-year dataset[J]. Earth System Science Data, 9(2): 497-509.
|
[24] |
ORGANELLI E, BRICAUD A, ANTOINE D, et al, 2013. Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site)[J]. Applied Optics, 52(11): 2257-2273.
|
[25] |
ROESLER C S, BARNARD A H, 2013. Optical proxy for phytoplankton biomass in the absence of photophysiology: rethinking the absorption line height[J]. Methods in Oceanography, 7: 79-94.
|
[26] |
SIEBURTH J M, SMETACEKV, LENZ J, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions[J]. Limnology and oceanography, 23: 1256-1263.
|
[27] |
SLADE W H, BOSS E, DALL’OLMO G, et al, 2010. Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation[J]. Journal of Atmospheric and Oceanic Technology, 27(10): 1733-1746.
|
[28] |
SULLIVAN J M, TWARDOWSKI M S, ZANEVELD J R V, et al, 2006. Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range[J]. Applied Optics, 45(21): 5294-5309.
|
[29] |
SUN XUERONG, SHEN FANG, LIU DONGYAN, et al, 2018. In situ and satellite observations of phytoplankton size classes in the entire continental shelf sea, China[J]. Journal of Geophysical Research: Oceans, 123: 3523-3544.
|
[30] |
UITZ J, CLAUSTRE H, MOREL A, et al, 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll[J]. Journal of Geophysical Research: Oceans, 111(C8): C08005.
|
[31] |
VIDUSSI F, CLAUSTRE H, MANCA B B, et al, 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter[J]. Journal of Geophysical Research: Oceans, 106(C9): 19939-19956.
|
[32] |
WANG GUIFEN, CAO WENXI, YANG DINGTIAN, et al, 2008. Partitioning particulate absorption coefficient into contributions of phytoplankton and nonalgal particles: A case study in the northern South China Sea[J]. Estuarine, Coastal and Shelf Science, 78(3): 513-520.
|
[33] |
WANG GUOQING, LEE Z, MISHRA D R, et al, 2016. Retrieving absorption coefficients of multiple phytoplankton pigments from hyperspectral remote sensing reflectance measured over cyanobacteria bloom waters[J]. Limnology and Oceanography: Methods, 14(7): 432-447.
|
[34] |
WOLANIN A, SOPPA M, BRACHER A, 2016. Investigation of spectral band requirements for improving retrievals of phytoplankton functional types[J]. Remote Sensing, 8(10): 871.
|
[35] |
ZHENG GUANGMING, STRAMSKI M, 2013. A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components[J]. Journal of Geophysical Research: Oceans, 118(4): 2155-2174, doi: 10.1002/jgrc.20115.
|