Journal of Tropical Oceanography ›› 2021, Vol. 40 ›› Issue (4): 143-156.doi: 10.11978/2020071CSTR: 32234.14.2020071
• Review • Previous Articles
LI Yunkai1,2,3,4(), CHEN Ziang1, GONG Yi1,2,3,4, CHEN Xinjun1,2,3,4
Received:
2020-07-10
Revised:
2020-08-29
Online:
2021-07-10
Published:
2020-09-02
Contact:
LI Yunkai
E-mail:ykli@shou.edu.cn;ykli@shou.edu.cn
Supported by:
CLC Number:
LI Yunkai, CHEN Ziang, GONG Yi, CHEN Xinjun. A review on the methods used in trophic niche studies of marine animals and their applications[J].Journal of Tropical Oceanography, 2021, 40(4): 143-156.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Single index and comprehensive index in describing food composition"
指数类型 | 指数 | 公式 |
---|---|---|
单一指数 | 出现频率(F%) | $F=\frac{某种饵料生物出现次数}{非空胃样品数} \times 100$. |
个数百分比(N%) | $N=\frac{某种饵料生物个数}{饵料生物总个数} \times 100$ | |
体积百分比(V%) | $V=\frac{某种饵料生物体积}{饵料生物总体积} \times 100$ | |
质量百分比(W%) | $W=\frac{某种饵料生物质量}{饵料生物总质量} \times 100$ | |
综合性指数 | 相对重要性指数(IRI) | $\text{IRI}=F{\scriptstyle{}^{0}/{}_{0}}(N{\scriptstyle{}^{0}/{}_{0}}+V{\scriptstyle{}^{0}/{}_{0}})$. 或$\text{IRI}=F{\scriptstyle{}^{0}/{}_{0}}(N{\scriptstyle{}^{0}/{}_{0}}+W{\scriptstyle{}^{0}/{}_{0}})$ |
绝对重要性指数(AI) | $\text{AI}=F{\scriptstyle{}^{0}/{}_{0}}+N{\scriptstyle{}^{0}/{}_{0}}+W{\scriptstyle{}^{0}/{}_{0}}$ | |
优势指数(IP) | ${{I}_{\text{P}}}=\frac{{{V}_{i}}{{F}_{i}}}{\sum{({{V}_{i}}{{F}_{i}})}}$ | |
几何重要性指数(GIIj) | $\text{GI}{{\text{I}}_{j}}=\frac{(\sum{{{V}_{i}}{{)}_{j}}}}{\sqrt{n}}$ |
Tab. 2
Quantitative indicators of trophic niche based on carbon and nitrogen stable isotopes"
定量指标 | 含义 | 作用 | 参考文献 |
---|---|---|---|
δ13C范围 | δ13C最大值与最小值之间的差值 | 可表示基础食物来源的多样性 | |
δ15N范围 | δ15N最大值与最小值之间的差值 | 可表示食物网中的营养长度, 取值范围越大表明营养级越宽泛 | |
质心的平均距离 | δ13C、δ15N二维坐标系中, 所有个体到质心的平均距离, 所有个体δ13C、δ15N的均值即为质心坐标 | 代表物种内营养多样性的平均程度 | |
最短均值 | δ13C、δ15N二维坐标系中, 相邻两点最短距离的平均值 | 可代表物种在δ13C、δ15N二维坐标系中的整体密度 | |
最短均值标准差 | δ13C、δ15N二维坐标系中, 相邻两点间最短距离的标准差 | 可代表物种在δ13C、δ15N二维坐标系中的均匀度, 其值越低表明营养生态位分布更加均匀。相比最短均值, 受样本量大小的影响较小 | |
凸包面积 | δ13C、δ15N二维坐标系中, 所有点围成的凸多边形面积 | 可指示食物网中营养多样性的总程度 | |
标准椭圆面积 | δ13C、δ15N二维坐标系中, 经协方差矩阵数据处理绘制的椭圆面积 | 量化营养结构和生态位划分, 相比凸包面积, 受样本量影响较小 |
Tab. 3
Comparison and applications of stomach content analysis, bulk tissue stable isotope analysis, fatty acid profile and compound-specific isotopic analysis of amino acids in trophic ecology study of marine animals"
方法 | 优势 | 劣势 | 应用 | 实例 | |
---|---|---|---|---|---|
胃含物分析(SCA) | 操作简单, 能够快速获取真实、具体的摄食信息 | 所需样本量较大, 空胃率较高; 食物消化率直接影响生物食性分析, 且仅能反映生物被捕捞前一段时间内的摄食情况, 存在一定的偶然性 | 食性分析、食物资源时空变化及与生物摄食行为的关系、营养级计算、营养(空间)生态位分析、食物竞争与生物空间分布的关系等 | ||
稳定同位素技术(SIA) | 可对胃含物食性分析进行补充, 对样本量要求不高, 能够反映生物较长或较短时间内的摄食信息 | 分馏系数和生物基线值易受生物生理、时间、环境变化的影响; 营养级计算不够精确 | 食性分析、食物资源分配及利用、营养级计算、营养生态位分析、物种迁徙洄游及栖息地分析、种间(内)关系分析等 | ||
脂肪酸组成分析(FA) | 能够反映生物一段时间内的摄食信息, 对样本量要求不高, 食性分析较为准确 | 无法计算营养级; 往往使用较多复杂的统计学方法 | 食性分析、食物资源分配及利用、营养生态位分析、种间(内)关系分析等 | ||
方法 | 优势 | 劣势 | 应用 | 实例 | |
氨基酸单体稳定同位素分析(CSIA-AA) | 样本量要求不高, 能够反映生物一段时间内的摄食信息; 营养级计算更为准确 | 前处理较为繁琐; 对氨基酸碳稳定同位素测定较少; 往往作为整体稳定同位素分析的补充手段, 对营养生态位研究尚处于摸索阶段, 没有达成统一标准 | 生物基线确定、营养级计算、营养生态位分析等 | ||
胃含物分析+稳定同位素技术(SCA+SIA) | 弥补了胃含物“分辨率”受限及仅能反映近期摄食信息的缺点, 食性分析更加准确; 更能揭示食物资源的划分及利用 | 食性分析、食物资源分配及利用、营养级评估、营养生态位分析、种间(内)关系分析等 | |||
稳定同位素技术+脂肪酸分析(SIA+FA) | 弥补了脂肪酸分析无法计算营养级的缺陷; 食性分析结果更准确; 能从不同角度解释营养生态位差异, 从多角度提供更多摄食信息, 研究潜在生态位重叠 | 食性分析、食物资源分配及利用、营养生态位分析、种间(内)关系分析等 | |||
稳定同位素技术+氨基酸单体稳定同位素分析(SIA+CSIA-AA) | 解决了生物基线值变化的问题, 计算营养级更为准确; 更能细化营养生态位差异 | 食性分析、食物资源分配及利用、生物基线确定、营养级计算及其时间变化、营养生态位分析、物种迁徙洄游和栖息地分析、种间(内)关系分析等 |
[1] | 盖珊珊, 赵文溪, 宋静静, 等, 2019. 小黑山岛人工鱼礁区许氏平鲉和大泷六线鱼的营养生态位研究[J]. 生态学报, 39(18):6923-6931. |
GAI SHANSHAN, ZHAO WENXI, SONG JINGJING, et al, 2019. Study on Trophic Niches of Sebastes schlegelii and Hexagrammos otakii in the artificial reef area of Xiaoheishan island[J]. Acta Ecologica Sinica, 39(18):6923-6931 (in Chinese with English abstract). | |
[2] | 高小迪, 陈新军, 李云凯, 2018. 水生食物网研究方法的发展和应用[J]. 中国水产科学, 25(6):1347-1360. |
GAO XIAODI, CHEN XINJUN, LI YUNKAI, 2018. A review on the methods used in aquatic food web research: development and applications[J]. Journal of Fishery Sciences of China, 25(6):1347-1360 (in Chinese with English abstract). | |
[3] | 贡艺, 陈玲, 李云凯, 2017. 海洋生态系统稳定同位素基线的选取[J]. 应用生态学报, 28(7):2399-2404. |
GONG YI, CHEN LING, LI YUNKAI, et al, 2017. Selection of isotopic baselines in marine ecosystems[J]. Chinese Journal of Applied Ecology, 28(7):2399-2404 (in Chinese with English abstract). | |
[4] | 韩东燕, 薛莹, 纪毓鹏, 等, 2013. 胶州湾5种虾虎鱼类的营养和空间生态位[J]. 中国水产科学, 20(1):148-156. |
HAN DONGYAN, XUE YING, JI YUPENG, et al, 2013. Trophic and spatial niche of five gobiid fishes in Jiaozhou Bay[J]. Journal of Fishery Sciences of China, 20(1):148-156 (in Chinese with English abstract). | |
[5] | 黄佳兴, 龚玉艳, 徐姗楠, 等, 2019. 南海中西部海域鸢乌贼中型群和微型群的营养生态位[J]. 应用生态学报, 30(8):2822-2828. |
HUANG JIAXING, GONG YUYAN, XU SHANNAN, et al, 2019. Trophic niche of medium-form and dwarf-form of purple flying squid Sthenoeuthis oualaniensis in the central and western South China Sea[J]. Chinese Journal of Applied Ecology, 30(8):2822-2828 (in Chinese with English abstract). | |
[6] | 黄亮, 吴莹, 张经, 2009. 脂肪酸标志水生生态系统营养关系的研究[J]. 海洋科学, 33(3):93-96. |
HUANG LIANG, WU YING, ZHANG JING, 2009. Studies on nutrient relation of aquatic ecosystem using fatty acids[J]. Marine Sciences, 33(3):93-96 (in Chinese with English abstract). | |
[7] | 姜亚洲, 林楠, 袁兴伟, 等, 2015. 基于碳、氮稳定同位素技术研究象山港虾虎鱼类营养生态位[J]. 生态学杂志, 34(6):1579-1585. |
JIANG YAZHOU, LIN NAN, YUAN XINGWEI, et al, 2015. Trophic niches of nine gobiid fishes in Xiangshan Bay determined by carbon and nitrogen stable isotope analysis[J]. Chinese Journal of Ecology, 34(6):1579-1585 (in Chinese with English abstract). | |
[8] | 李凡, 徐炳庆, 吕振波, 等, 2018. 莱州湾鱼类群落优势种生态位[J]. 生态学报, 38(14):5195-5205. |
LI FAN, XU BINGQING, LÜ ZHENBO, et al, 2018. Ecological niche of dominant species of fish assemblages in Laizhou Bay, China[J]. Acta Ecologica Sinica, 38(14):5195-5205 (in Chinese with English abstract). | |
[9] | 李㛃, 朱金兆, 朱清科, 2003. 生态位理论及其测度研究进展[J]. 北京林业大学学报, 25(1):100-107. |
LI JIE, ZHU JINZHAO, ZHU QINGKE, et al, 2003. A review on niche theory and niche metrics[J]. Journal of Beijing Forestry University, 25(1):100-107 (in Chinese with English abstract). | |
[10] | 刘屹, 邓竣尹, 谢天资, 等, 2015. 生态位研究进展及干旱河谷生态位研究重点[J]. 四川林业科技, 36(5):16-20. |
LIU YI, DENG JUNYIN, XIE TIANZI, et al, 2015. Advances in niche research and niche research priorities in dry valley areas[J]. Journal of Sichuan Forestry Science and Technology, 36(5):16-20 (in Chinese with English abstract). | |
[11] | 沙永翠, 张培育, 张欢, 等, 2015. 栖息地环境对种群营养生态位的影响——以黄颡鱼为例[J]. 生态学报, 35(5):1321-1328. |
SHA YONGCUI, ZHANG PEIYU, ZHANG HUAN, et al, 2015. Impacts of habitat environment on trophic niches of a local population: a case study of yellow catfish[J]. Acta Ecologica Sinica, 35(5):1321-1328 (in Chinese with English abstract). | |
[12] | 石焱, 2018. 基于碳氮稳定同位素的闽江口常见鱼类营养生态位季节性变化[D]. 厦门: 集美大学. |
SHI YAN, 2018. Seasonal variation in trophic niche of common fish in the Min Estuary based on stable isotope[D]. Jimei University (in Chinese with English abstract). | |
[13] | 王凤, 鞠瑞亭, 李跃忠, 等, 2006. 生态位概念及其在昆虫生态学中的应用[J]. 生态学杂志, 25(10):1280-1284. |
WANG FENG, JU RUITING, LI YUEZHONG, et al, 2006. Niche concept and its application in insect ecology[J]. Chinese Journal of Ecology, 25(10):1280-1284 (in Chinese with English abstract). | |
[14] | 王桂明, 周庆强, 钟文勤, 1996. 内蒙古典型草原4种常见小哺乳动物的营养生态位及相互关系[J]. 生态学报, 16(1):71-76. |
WANG GUIMING, ZHOU QINGQIANG, ZHONG WENQIN, 1996. Trophic niches of four species of common small mammals in inner Mongolia grassland and their relationships[J]. Acta Ecologica Sinica, 16(1):71-76 (in Chinese with English abstract). | |
[15] | 王娜, 2008. 脂肪酸等生物标志物在海洋食物网研究中的应用——以长江口毗邻海域为例[D]. 上海: 华东师范大学. |
WANG NA, 2008. Application of fatty acids biomarker in marine food web research: a case in the Yangtse river estuary sea area[D]. East China Normal University (in Chinese with English abstract). | |
[16] | 席晓晴, 鲍宝龙, 章守宇, 2017. DNA条形码在马鞍列岛海域皮氏叫姑鱼胃含物鉴定中的应用[J]. 水产学报, 41(10):1533-1541. |
XI XIAOQING, BAO BAOLONG, ZHANG SHOUYU, 2017. Application of DNA barcoding in analyzing food composition of Belanger’s croaker (Johnius belangerii) in Ma’an Archipelago[J]. Journal of Fisheries of China, 41(10):1533-1541 (in Chinese with English abstract). | |
[17] | 薛莹, 金显仕, 2003. 鱼类食性和食物网研究评述[J]. 海洋水产研究, 24(2):76-87. |
XUE YING, JIN XIANSHI, 2003. Review of the study on feeding habits of fishes and food webs[J]. Marine Fisheries Research, 24(2):76-87 (in Chinese with English abstract). | |
[18] | 杨璐, 曹文清, 林元烧, 等, 2016. 夏季北部湾九种经济鱼类的食性类型及营养生态位初步研究[J]. 热带海洋学报, 35(2):66-75. |
YANG LU, CAO WENQING, LIN YUANSHAO, et al, 2016. Preliminary study on feeding habits and trophic niche of nine economic fish species in Beibu Gulf in summer[J]. Journal of Tropical Oceanography, 35(2):66-75 (in Chinese with English abstract). | |
[19] | 杨效文, 马继盛, 1992. 生态位有关术语的定义及计算公式评述[J]. 生态学杂志, 11(2):44-49, 35. |
YANG XIAOWEN, MA JISHENG, 1992. A review on some terms related to niche and their measurements[J]. Chinese Journal of Ecology, 11(2):44-49, 35 (in Chinese with English abstract). | |
[20] | 原宝东, 闫永峰, 2016. 鹊鸲冬季和春季取食生态位初步研究[J]. 四川动物, 35(3):426-430. |
YUAN BAODONG, YAN YONGFENG, 2016. Feeding niche of Copsychus saularis between spring and winter[J]. Sichuan Journal of Zoology, 35(3):426-430 (in Chinese with English abstract). | |
[21] | 钟章成, 1987. 生态位及其在生态学研究中的应用[J]. 资源开发与保护, 3(3):7-12 (in Chinese) |
[22] | 周丹, 丛沛桐, 于涛, 等, 1999. 羊草种群生态位的计算方法[J]. 东北林业大学学报, 27(3):48-50. |
ZHOU DAN, CONG PEITON, YU TAO, et al, 1999. Research of calculated method on population ecological niche of leymus[J]. Journal of Northeast Forestry University, 27(3):48-50 (in Chinese with English abstract). | |
[23] |
ANTONIO E S, RICHOUX N B, 2014. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses[J]. Marine Ecology Progress Series, 504:193-205.
doi: 10.3354/meps10761 |
[24] |
BEARHOP S, ADAMS C E, WALDRON S, et al, 2004. Determining trophic niche width: a novel approach using stable isotope analysis[J]. Journal of Animal Ecology, 73(5):1007-1012.
doi: 10.1111/j.0021-8790.2004.00861.x |
[25] |
BIERWAGEN S L, PETHYBRIDGE H, HEUPEL M R, et al, 2019. Trophic niches determined from fatty acid profiles of sympatric coral reef mesopredators[J]. Marine Ecology Progress Series, 632:159-174.
doi: 10.3354/meps13150 |
[26] |
BOECKLEN W J, YARNES C T, COOK B A, et al, 2011. On the use of stable isotopes in trophic ecology[J]. Annual Review of Ecology, Evolution, and Systematics, 42:411-440.
doi: 10.1146/annurev-ecolsys-102209-144726 |
[27] |
BOURDIER G G, AMBLARD C A, 1989. Lipids in Acanthodiaptomus denticomis during starvation and fed on three different algae[J]. Journal of Plankton Research, 11(6):1201-1212.
doi: 10.1093/plankt/11.6.1201 |
[28] |
BRODEUR R D, SMITH B E, MCBRIDE R S, et al, 2017. New perspectives on the feeding ecology and trophic dynamics of fishes[J]. Environmental Biology of Fishes, 100(4):293-297.
doi: 10.1007/s10641-017-0594-1 |
[29] |
CARROLL G, HOLSMAN K K, BRODIE S, et al, 2019. A review of methods for quantifying spatial predator-prey overlap[J]. Global Ecology and Biogeography, 28(11):1561-1577.
doi: 10.1111/geb.v28.11 |
[30] |
CASSINI M H, 1994. Behavioral mechanisms of selection of diet components and their ecological implications in herbivorous mammals[J]. Journal of Mammalogy, 75(3):733-740.
doi: 10.2307/1382523 |
[31] |
CHEREL Y, BUSTAMANTE P, RICHARD P, 2019. Amino acid δ13C and δ15N from sclerotized beaks: a new tool to investigate the foraging ecology of cephalopods, including giant and colossal squids[J]. Marine Ecology Progress Series, 624:89-102.
doi: 10.3354/meps13002 |
[32] |
CHIKARAISHI Y, KASHIYAMA Y, OGAWA N O, et al, 2007. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies[J]. Marine Ecology Progress Series, 342:85-90.
doi: 10.3354/meps342085 |
[33] |
CHIKARAISHI Y, OGAWA N O, KASHIYAMA Y, et al, 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids[J]. Limnology and Oceanography: Methods, 7(11):740-750.
doi: 10.4319/lom.2009.7.740 |
[34] |
CHIKARAISHI Y, STEFFAN S A, OGAWA N O, et al, 2014. High-resolution food webs based on nitrogen isotopic composition of amino acids[J]. Ecology and Evolution, 4(12):2423-2449.
doi: 10.1002/ece3.2014.4.issue-12 |
[35] |
CHIU-WERNER A, CEIA F R, CÁRDENAS-ALAYZA S, et al, 2019. Inter-annual isotopic niche segregation of wild humboldt penguins through years of different El Niño intensities[J]. Marine Environmental Research, 150:104755.
doi: 10.1016/j.marenvres.2019.104755 |
[36] | CLARKE L J, TREBILCO R, WALTERS A, et al, 2020. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen Axis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 174, doi: 10.1016/j.dsr2.2018.09.001 |
[37] |
COLWELL R K, FUTUYMA D J, 1971. On the measurement of niche breadth and overlap[J]. Ecology, 52(4):567-576.
doi: 10.2307/1934144 |
[38] |
CORRÊA C E, ALBRECHT M P, HAHN N S, 2011. Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin[J]. Neotropical Ichthyology, 9(3):637-646.
doi: 10.1590/S1679-62252011000300017 |
[39] |
COSTA P A S, BRAGA A C, MALAVOLTI G S, et al, 2019. Feeding habits and trophic status of Merluccius hubbsi along the northernmost limit of its distribution in the South-western Atlantic[J]. Journal of the Marine Biological Association of the United Kingdom, 99(6):1399-1408.
doi: 10.1017/S0025315419000237 |
[40] | DALSGAARD J, JOHN M S, KATTNER G, et al, 2003. Fatty acid trophic markers in the pelagic marine environment[J]. Advances in Marine Biology, 46:225-340. |
[41] |
DEL RIO C M, WOLF N, CARLETON S A, et al, 2009. Isotopic ecology ten years after a call for more laboratory experiments[J]. Biological Reviews, 84(1):91-111.
doi: 10.1111/brv.2009.84.issue-1 |
[42] | Elton C S, 1927. Animal Ecology[M]. London: Sidgwick and Jackson, 63-68. |
[43] |
ESPINOZA M, MATLEY J, HEUPEL M R, et al, 2019. Multi-tissue stable isotope analysis reveals resource partitioning and trophic relationships of large reef-associated predators[J]. Marine Ecology Progress Series, 615:159-176.
doi: 10.3354/meps12915 |
[44] |
FEINSINGER P, SPEARS E E, POOLE R W, 1981. A simple measure of niche breadth[J]. Ecology, 62(1):27-32.
doi: 10.2307/1936664 |
[45] |
FOGARTY M J, MURAWSKI S A, 1998. Large-scale disturbance and the structure of marine systems: fishery impacts on Georges Bank[J]. Ecological Applications, 8(sp1):S6-S22.
doi: 10.1890/1051-0761(1998)8[S6:LDATSO]2.0.CO;2 |
[46] |
GARCIA A F S, GARCIA A M, VOLLRATH S R, et al, 2018. Spatial diet overlap and food resource in two congeneric mullet species revealed by stable isotopes and stomach content analyses[J]. Community Ecology, 19(2):116-124.
doi: 10.1556/168.2018.19.2.3 |
[47] |
GRAINGER R, PEDDEMORS V M, RAUBENHEIMER D, et al, 2020. Diet composition and nutritional niche breadth variability in juvenile white sharks (Carcharodon carcharias)[J]. Frontiers in Marine Science, 7:422.
doi: 10.3389/fmars.2020.00422 |
[48] |
GROSSMAN G D, 1986. Food resource partitioning in a rocky intertidal fish assemblage[J]. Journal of Zoology, 1(2):317-355.
doi: 10.1111/jzo.1986.1.issue-2 |
[49] |
GUO ZHIQIANG, LIU JIASHOU, LEK S, et al, 2014. Trophic niche differences between two congeneric goby species: evidence for ontogenetic diet shift and habitat use[J]. Aquatic Biology, 20(1):23-33.
doi: 10.3354/ab00530 |
[50] |
HAJIBABAEI M, SINGER G A C, HEBERT P D N, et al, 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics[J]. Trends in Genetics, 23(4):167-172.
doi: 10.1016/j.tig.2007.02.001 |
[51] |
HANCOCK T L, POULAKIS G R, SCHARER R M, et al, 2019. High-resolution molecular identification of smalltooth sawfish prey[J]. Scientific Reports, 9(1):18307.
doi: 10.1038/s41598-019-53931-7 |
[52] |
HETHERINGTON E D, KURLE C M, BENSON S R, et al, 2019. Re-examining trophic dead ends: stable isotope values link gelatinous zooplankton to leatherback turtles in the California Current[J]. Marine Ecology Progress Series, 632:205-219.
doi: 10.3354/meps13117 |
[53] |
HURLBERT S H, 1978. The measurement of niche overlap and some relatives[J]. Ecology, 59(1):67-77.
doi: 10.2307/1936632 |
[54] |
HYSLOP E J, 1980. Stomach contents analysis—a review of methods and their application[J]. Journal of Fish Biology, 17(4):411-429.
doi: 10.1111/jfb.1980.17.issue-4 |
[55] |
JACKSON A L, INGER R, PARNELL A C, et al, 2011. Comparing isotopic niche widths among and within communities: SIBER - stable isotope Bayesian ellipses in R[J]. Journal of Animal Ecology, 80(3):595-602.
doi: 10.1111/jane.2011.80.issue-3 |
[56] |
JI WEIWEI, YOKOYAMA H, REID W D K, et al, 2019. Trophic ecology of Penaeus chinensis (Decapoda: Dendrobranchiata: Penaeidae) and potential competitive interactions with other species in the Haizhou Bay determined by carbon and nitrogen stable isotope analysis[J]. Regional Studies in Marine Science, 32:100842.
doi: 10.1016/j.rsma.2019.100842 |
[57] |
KNICKLE D C, ROSE G A, 2014. Dietary niche partitioning in sympatric gadid species in coastal Newfoundland: evidence from stomachs and C-N isotopes[J]. Environmental Biology of Fishes, 97(4):343-355.
doi: 10.1007/s10641-013-0156-0 |
[58] | KREBS C J, 1989. Ecological methodology[M]. New York: Harper & Row Publisher. |
[59] |
LAIZ-CARRIÓN R, GERARD T, SUCA J J, et al, 2019. Stable isotope analysis indicates resource partitioning and trophic niche overlap in larvae of four tuna species in the Gulf of Mexico[J]. Marine Ecology Progress, 619:53-68.
doi: 10.3354/meps12958 |
[60] |
LAYMAN C A, ARRINGTON D A, MONTAÑA C G, et al, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 88(1):42-48.
doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 |
[61] | LEVINS R, 1968. Toward an evolutionary theory of the niche[M]//DRAKE E T. Evolution and environment. New Haven and London: Yale University Press: 325-340. |
[62] |
LI YUNKAI, GONG YI, CHEN XINJUN, et al, 2014. Trophic ecology of sharks in the mid-east Pacific ocean inferred from stable isotopes[J]. Journal of Ocean University of China, 13(2):278-282.
doi: 10.1007/s11802-014-2071-1 |
[63] |
LORRAIN A, GRAHAM B, MÉNARD F, et al, 2009. Nitrogen and carbon isotope values of individual amino acids: a tool to study foraging ecology of penguins in the Southern Ocean[J]. Marine Ecology Progress Series, 391:293-306.
doi: 10.3354/meps08215 |
[64] | MACARTHUR R H, 1968. The theory of the niche[M]//LEWONTIN R C. Population biology and evolution. Syracuse, NY: Syracuse University Press: 159-176. |
[65] |
MAITRA S, HARIKRISHNAN M, NIDHIN B, 2020. Feeding strategy, dietary overlap and resource partitioning among four mesopredatory catfishes of a tropical estuary[J]. Journal of Fish Biology, 96(1):130-139.
doi: 10.1111/jfb.v96.1 |
[66] |
MARSHALL S, ELLIOTT M, 1997. A comparison of univariate and multivariate numerical and graphical techniques for determining inter- and intraspecific feeding relationships in estuarine fish[J]. Journal of Fish Biology, 51(3):526-545.
doi: 10.1111/jfb.1997.51.issue-3 |
[67] |
MCCLELLAND J W, MONTOYA J P, 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton[J]. Ecology, 83(8):2173-2180.
doi: 10.1890/0012-9658(2002)083[2173:TRATNI]2.0.CO;2 |
[68] |
MCMAHON K W, FOGEL M L, ELSDON T S, et al, 2010. Carbon isotope fractionation of amino acids in fish muscle reflects biosynjournal and isotopic routing from dietary protein[J]. Journal of Animal Ecology, 79(5):1132-1141.
doi: 10.1111/j.1365-2656.2010.01722.x |
[69] | MCMAHON K W, MICHELSON C I, HART T, et al, 2019. Divergent trophic responses of sympatric penguin species to historic anthropogenic exploitation and recent climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(51):25721-25727. |
[70] |
MINAGAWA M, WADA E, 1984. Stepwise enrichment of15N along food chains: further evidence and the relation between δ15N and animal age[J]. Geochimica et Cosmochimica Acta, 48(5):1135-1140.
doi: 10.1016/0016-7037(84)90204-7 |
[71] |
MURILLO-CISNEROS D A, O’HARA T M, ELORRIAGA-VERPLANCKEN F R, et al, 2019. Trophic assessment and isotopic niche of three sympatric ray species of western Baja California Sur, Mexico[J]. Environmental Biology of Fishes, 102(12):1519-1531.
doi: 10.1007/s10641-019-00923-1 |
[72] |
PEAVEY L E, POPP B N, PITMAN R L, et al, 2017. Opportunism on the high seas: foraging ecology of olive Ridley turtles in the eastern Pacific Ocean[J]. Frontiers in Marine Science, 4:348.
doi: 10.3389/fmars.2017.00348 |
[73] |
PETHYBRIDGE H, BODIN N, ARSENAULT-PERNET E J, et al, 2014. Temporal and inter-specific variations in forage fish feeding conditions in the NW Mediterranean: lipid content and fatty acid compositional changes[J]. Marine Ecology Progress Series, 512(9):39-54.
doi: 10.3354/meps10864 |
[74] |
PIANKA E R, 1973. The structure of lizard communities[J]. Annual Review of Ecology and Systematics, 4:53-74.
doi: 10.1146/annurev.es.04.110173.000413 |
[75] |
PIELOU E C, 1966. Shannon’s formula as a measure of specific diversity: its use and misuse[J]. The American Naturalist, 100(914):463-465.
doi: 10.1086/282439 |
[76] |
PODANI J, 2009. Convex hulls, habitat filtering, and functional diversity: mathematical elegance versus ecological interpretability[J]. Community Ecology, 10(2):244-250.
doi: 10.1556/ComEc.10.2009.2.15 |
[77] | POPP B N, GRAHAM B S, OLSON R J, et al, 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids[J]. Terrestrial Ecology, 1:173-190. |
[78] |
POST D M, 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 83(3):703-718.
doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 |
[79] |
ROSS S T, 1986. Resource partitioning in fish assemblages: a review of field studies[J]. Copeia, 1986(2):352-388.
doi: 10.2307/1444996 |
[80] |
RUIZ-COOLEY R I, GERRODETTE T, FIEDLER P C, et al, 2017. Temporal variation in pelagic food chain length in response to environmental change[J]. Science Advances, 3(10):e1701140.
doi: 10.1126/sciadv.1701140 |
[81] |
SANTOS-CARVALLO M, PÉREZ-ALVAREZ M J, MUNIAIN V, et al, 2015. Trophic niche overlap between sympatric resident and transient populations of bottlenose dolphins in the Humboldt Current System off north-central Chile[J]. Marine Mammal Science, 31(2):790-799.
doi: 10.1111/mms.2015.31.issue-2 |
[82] |
SÁ-OLIVEIRA J C, ANGELINI R, ISAAC-NAHUM V J, 2014. Diet and niche breadth and overlap in fish communities within the area affected by an Amazonian reservoir (Amapá, Brazil)[J]. Anais da Academia Brasileira de Ciências, 86(1):383-406.
doi: 10.1590/0001-3765201420130053 |
[83] |
SARDENNE F, BODIN N, CHASSOT E, et al, 2016. Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids[J]. Progress in Oceanography, 146:75-88.
doi: 10.1016/j.pocean.2016.06.001 |
[84] |
SARGENT J R, BELL J G, BELL M V, et al, 1995. Requirement criteria for essential fatty acids[J]. Journal of Applied Ichthyology, 11(3-4):183-198.
doi: 10.1111/jai.1995.11.issue-3-4 |
[85] |
SCHOENER T W, 1970. Nonsynchronous spatial overlap of lizards in patchy habitats[J]. Ecology, 51(3):408-418.
doi: 10.2307/1935376 |
[86] | SHANNON C E, WEAVER W, 1963. The mathematical theory of communication[M]. Urbana, Ill.: University of Illinois Press: 125. |
[87] |
STEWART S D, HAMILTON D P, BAISDEN W T, et al, 2017. Variable littoral-pelagic coupling as a food-web response to seasonal changes in pelagic primary[J]. Freshwater Biology, 62(12):2008-2025.
doi: 10.1111/fwb.2017.62.issue-12 |
[88] |
TREMBLAY L, BENNER R, 2009. Organic matter diagenesis and bacterial contributions to detrital carbon and nitrogen in the Amazon River system[J]. Limnology and Oceanography, 54(3):681-691.
doi: 10.4319/lo.2009.54.3.0681 |
[89] |
VARELA J L, CAÑAVATE J P, MEDINA A, et al, 2019. Inter-regional variation in feeding patterns of skipjack tuna (Katsuwonus pelamis) inferred from stomach content, stable isotope and fatty acid analyses[J]. Marine Environmental Research, 152:104821.
doi: 10.1016/j.marenvres.2019.104821 |
[90] |
VAUDO J J, HEITHAUS M R, 2011. Dietary niche overlap in a nearshore elasmobranch mesopredator community[J]. Marine Ecology Progress Series, 425:247-260.
doi: 10.3354/meps08988 |
[91] |
WALLACE R K JR, 1981. An assessment of diet-overlap indexes[J]. Transactions of the American Fisheries Society, 110(1):72-76.
doi: 10.1577/1548-8659(1981)110<72:AAODI>2.0.CO;2 |
[92] |
WILLSON J D, WINNE C T, PILGRIM M A, et al, 2010. Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approach[J]. Oikos, 119(7):1161-1171.
doi: 10.1111/j.1600-0706.2009.17939.x |
[93] |
ZANDEN H B V, ARTHUR K E, BOLTEN A B, et al, 2013. Trophic ecology of a green turtle breeding population[J]. Marine Ecology Progress Series, 476:237-249.
doi: 10.3354/meps10185 |
[94] |
ZHANG YINGQIU, XU QIANG, XU QINZENG, et al, 2018. Dietary composition and trophic niche partitioning of spotty‐bellied greenlings Hexagrammos agrammus, fat greenlings H. otakii, Korean rockfish Sebastes schlegelii, and Japanese seaperch Lateolabrax japonicus in the Yellow sea revealed by stomach content analysis and stable isotope analysis[J]. Marine and Coastal Fisheries, 10(2):255-268.
doi: 10.1002/mcf2.10019 |
[1] | ZHANG Wanru, LIU Qingxia, HUANG Honghui, QIN Xiaoqing, LI Jiajun, CHEN Jianhua. Study on stable isotopes of carbon and nitrogen of main fishery organisms in the southwestern waters of Daya Bay, South China Sea in winter 2020 [J]. Journal of Tropical Oceanography, 2022, 41(3): 147-155. |
[2] | ZHANG Chen, HU Simin, LIN Xianzhi, ZHOU Tiancheng, HUANG Hui, LIU Sheng. Diet and trophic level analysis of triggerfish (Balistapus undulatuse) in coral reefs of Nansha [J]. Journal of Tropical Oceanography, 2022, 41(1): 7-14. |
[3] | Jiaxing HUANG, Yuyan GONG, Shannan XU, Huanhuan WANG, Kui ZHANG, Jun ZHANG, Zuozhi CHEN. Characteristics of stable carbon and nitrogen isotopes of major fishery organisms in the fishing ground of central western South China Sea [J]. Journal of Tropical Oceanography, 2019, 38(1): 76-84. |
[4] | Tiantian SUN, Daidai WU, Mengdi PAN, Fei YANG, Nengyou WU, Xuegang CHENG, Lihua LIU. Geochemical characteristics of surface sediments in the Southern Qiongdongnan Basin of the northern South China Sea and its implication for sedimentary environment* [J]. Journal of Tropical Oceanography, 2018, 37(4): 70-80. |
[5] | YANG Lu, CAO Wenqing, LIN Yuanshao, CHEN Yinghan, LIN Zhaojin, WANG Xuehui. Preliminary study on feeding habits and trophic niche of nine economic fish species in Beibu Gulf in summer [J]. Journal of Tropical Oceanography, 2016, 35(2): 66-75. |
[6] | LIU Hua-xue, XU Jun, LI Chun-hou, CHEN Zuo-zhi, HUANG Hong-hui. Stable nitrogen isotope of zooplankton in the southern South China Sea [J]. Journal of Tropical Oceanography, 2015, 34(2): 32-38. |
|