Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (3): 147-155.doi: 10.11978/2021108CSTR: 32234.14.2021108
• Marine Biology • Previous Articles Next Articles
ZHANG Wanru1,2(), LIU Qingxia2,3, HUANG Honghui1,2,3(), QIN Xiaoqing2, LI Jiajun2, CHEN Jianhua1()
Received:
2021-08-25
Revised:
2021-12-02
Published:
2021-12-13
Contact:
HUANG Honghui,CHEN Jianhua
E-mail:zhangwanru0617@163.com;huanghh@scsfri.ac.cn;chenjianhuazsu@163.com
Supported by:
CLC Number:
ZHANG Wanru, LIU Qingxia, HUANG Honghui, QIN Xiaoqing, LI Jiajun, CHEN Jianhua. Study on stable isotopes of carbon and nitrogen of main fishery organisms in the southwestern waters of Daya Bay, South China Sea in winter 2020[J].Journal of Tropical Oceanography, 2022, 41(3): 147-155.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Stable isotope ratios of δ13C and δ15N, length range and trophic level (TL) of major fishery organisms in the southwestern waters of Daya Bay (n=2)"
种类 | δ13C/‰ | δ15N/‰ | 长度范围/mm | 营养级 | ||
---|---|---|---|---|---|---|
TPA | TPS | |||||
鱼类 | 多鳞鱚 Sillago sihama | -15.88 | 13.82 | 120~170 | 3.64 | 3.66 |
单角革鲀 Aluterus monoceros | -16.50 | 12.92 | 3.37 | 3.32 | ||
黄斑篮子鱼 Siganus canaliculatus | -16.63 | 13.69 | 167~176 | 3.60 | 3.61 | |
小头栉孔鰕虎鱼 Ctenotrypauchen microcephalus | -16.76 | 13.83 | 65~69 | 3.64 | 3.66 | |
小黄鱼 Larimichthys polyactis | -16.67 | 12.31 | 116~148 | 3.19 | 3.12 | |
绿斑细棘鰕虎鱼 Acentrogobius chloorstigmatoides | -16.46 | 13.85 | 3.65 | 3.67 | ||
孔鰕虎鱼 Trypauchen vagina | -16.53 | 13.22 | 89~100 | 3.46 | 3.43 | |
矛尾鰕虎鱼 Chaeturichthys stigmatias | -17.15 | 13.14 | 94~178 | 3.44 | 3.40 | |
虎鲉 Minous monodactylus | -15.46 | 14.38 | 3.80 | 3.88 | ||
黄吻棱鳀 Thryssa vitrirostris | -17.52 | 13.11 | 3.43 | 3.39 | ||
李氏? Callionymus richardsoni | -16.23 | 13.37 | 70~91 | 3.51 | 3.49 | |
海鳗 Muraenesox cinereus | -15.97 | 13.64 | 98~120 | 3.58 | 3.59 | |
短吻鲾 Leiognathus brevirostris | -17.63 | 13.84 | 44~59 | 3.64 | 3.67 | |
截尾白姑鱼 Pennahia anea | -17.39 | 14.36 | 145 | 3.80 | 3.88 | |
线纹鳗鲶 Plotosus lineatus | -16.29 | 14.53 | 21~215 | 3.85 | 3.95 | |
长蛇鲻 Saurida elongata | -16.31 | 14.91 | 185~233 | 3.96 | 4.12 | |
艾氏蛇鳗 Ophichthus lithinus | -16.20 | 14.17 | 185~260 | 3.74 | 3.80 | |
单斑笛鲷 Lutjanus monostigma | -14.85 | 15.23 | 4.05 | 4.26 | ||
虾蟹类 | 远海梭子蟹 Portunus pelagicus | -16.09 | 11.05 | 2.82 | 2.73 | |
红星梭子蟹 Portunus sanguinolentus | -16.11 | 12.09 | 3.13 | 3.04 | ||
晶莹蟳 Charybdis lucifera | -16.64 | 11.72 | 3.02 | 2.93 | ||
伪装关公蟹 Dorippe facchino | -16.83 | 11.93 | 3.08 | 2.99 | ||
香港蟳 Charybdis hongkongensis | -16.17 | 11.94 | 3.08 | 3.00 | ||
隆线强蟹 Eucrate crenata | -15.73 | 12.12 | 3.14 | 3.05 | ||
美人蟳 Charybdis callianassa | -15.99 | 11.67 | 3.01 | 2.91 | ||
阿氏强蟹 Eucrate alcocki | -15.96 | 12.22 | 3.17 | 3.09 | ||
日本蟳 Charybdis japonica | -15.85 | 11.88 | 3.07 | 2.98 | ||
口虾蛄 Oratosquilla oratori | -16.94 | 12.06 | 3.12 | 3.04 | ||
饰尾绿虾蛄 Clorida decorata | -16.35 | 11.83 | 3.05 | 2.96 | ||
断脊口虾蛄 Oratosquillina interrupta | -15.51 | 12.62 | 3.28 | 3.22 | ||
近缘新对虾 Metapenaeus affinis | -16.45 | 12.03 | 3.11 | 3.03 | ||
长毛对虾 Penaeus penicillatus | -16.03 | 11.70 | 3.01 | 2.92 | ||
宽突赤虾 Metapenaeopsis palmensis | -16.45 | 11.66 | 3.00 | 2.91 | ||
毛虾 Acetes | -17.67 | 11.08 | 2.83 | 2.73 | ||
头足类 | 杜氏枪乌贼 Loligo duvaucelii | -16.27 | 15.03 | 30~200 | 3.99 | 4.17 |
Tab. 2
Measurement parameters of trophic structure analysis"
参数名称 | 简写 | 含义 | 参数值 |
---|---|---|---|
δ13C比值范围 | CR | 图中δ13C 最大值与最小值之间的绝对距离, 反映初始食源的多样性特征 | 2.83 |
δ15N比值范围 | NR | 图中δ15N 最大值与最小值之间的绝对距离, 反映消费者所占的营养层次 | 4.18 |
多边形面积 | TA | 由所有物种在δ13C-δ15N 双位图上组成的多边形面积, 是衡量群落占据的生态位空间的总数量, 代表食物网中营养多样性的总范围 | 8.30 |
质心均距 | CD | 质心坐标为所有样品δ13C、δ15N的平均值, 计算所有样品到质心的欧氏距离, 并得出平均值, 表示群落营养多样性的平均水平 | 1.18 |
最短均值 | NND | 相邻两点间最短距离的平均值, 反映群落的聚集度密度 | 0.31 |
最短均值标准差 | SDNND | 相邻两点间最短距离的标准差, 反映群落物种聚集度均匀度, 表示营养生态位分布范围水平 | 0.23 |
Tab. 3
Trophic structure of food web in typical sea areas"
区域 | 参考文献 | CR | NR | TA | CD | NND | SDNND |
---|---|---|---|---|---|---|---|
大亚湾西南海域 | 本文 | 2.83 | 4.18 | 8.30 | 1.18 | 0.31 | 0.23 |
海陵湾 | 张文博 等, | 2.44 | 3.06 | 5.10 | 0.93 | 0.55 | 0.35 |
陵水湾 | 张文博 等, | 4.45 | 4.66 | 11.18 | 1.49 | 0.60 | 0.54 |
珠江口海域 | 曾艳艺 等, | 12.58 | 7.57 | — | — | — | — |
海州湾 | 谢斌 等, | 3.70 | 6.40 | 13.00 | 1.37 | 0.61 | 0.64 |
南海中西部海域 | 黄佳兴 等, | 3.49 | 4.91 | 9.48 | 1.20 | 1.69 | 0.74 |
南沙群岛西南陆架区 | 宁加佳 等, | 3.40 | 4.30 | 5.80 | 1.00 | 0.37 | 0.43 |
东海中北部海域 | 纪炜炜 等, | 3.38 | 3.45 | 7.02 | 1.12 | 0.42 | 0.28 |
[1] | 贡艺, 陈玲, 李云凯, 2017. 海洋生态系统稳定同位素基线的选取[J]. 应用生态学报, 28(7): 2399-2404. |
GONG YI, CHEN LING, LI YUNKAI, 2017. Selection of isotopic baselines in marine ecosystems[J]. Chinese Journal of Applied Ecology, 28(7): 2399-2404. (in Chinese with English abstract) | |
[2] | 黄佳兴, 龚玉艳, 徐姗楠, 等, 2019. 南海中西部渔场主要渔业生物碳氮稳定同位素特征[J]. 热带海洋学报, 38(1): 76-84. |
HUANG JIAXING, GONG YUYAN, XU SHANNAN, et al, 2019. Characteristics of stable carbon and nitrogen isotopes of major fishery organisms in the fishing ground of central western South China Sea[J]. Journal of Tropical Oceanography, 38(1): 76-84. (in Chinese with English abstract) | |
[3] | 黄小平, 黄良民, 宋金明, 等, 2019. 营养物质对海湾生态环境影响的过程与机理[M]. 北京: 科学出版社: 549-558. (in Chinese) |
[4] | 纪炜炜, 李圣法, 陈雪忠, 等, 2015. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化[J]. 海洋渔业, 37(6): 494-500. |
JI WEIWEI, LI SHENGFA, CHEN XUEZHONG, et al, 2015. Variation in trophic structure of nekton organisms from the northern East China Sea and adjacent waters based on stable isotope values[J]. Marine Fisheries, 37(6): 494-500. (in Chinese with English abstract) | |
[5] | 牟新悦, 陈敏, 张琨, 等, 2017. 夏季大亚湾悬浮颗粒有机物碳、氮同位素组成及其物源指示[J]. 海洋学报, 39(2): 39-52. |
MOU XINYUE, CHEN MIN, ZHANG KUN, et al, 2017. Stable carbon and nitrogen isotopes as tracers of sources of suspended particulate organic matter in the Daya Bay in summer[J]. Haiyang Xuebao, 39(2): 39-52. (in Chinese with English abstract) | |
[6] | 宁加佳, 杜飞雁, 王雪辉, 等, 2016. 南沙群岛西南部陆架区底层鱼类营养结构研究[J]. 海洋与湖沼, 47(2): 468-475. |
NING JIAJIA, DU FEIYAN, WANG XUEHUI, et al, 2016. The trophic structure of demersal fish species in Southwestern continental shelf of Nansha Islands, South China Sea[J]. Oceanologia et Limnologia Sinica, 47(2): 468-475. (in Chinese with English abstract) | |
[7] | 王友绍, 王肇鼎, 黄良民, 2004. 近20年来大亚湾生态环境的变化及其发展趋势[J]. 热带海洋学报, 23(5): 85-95. |
WANG YOUSHAO, WANG ZHAODING, HUANG LIANGMIN, 2004. Environment changes and trends in Daya Bay in recent 20 years[J]. Journal of Tropical Oceanography, 23(5): 85-95. (in Chinese with English abstract) | |
[8] | 王玉堃, 2015. 耳石微细结构和微化学示踪技术在鱼类种群生态学研究中的应用[D]. 青岛: 中国海洋大学. |
WANG YUKUN, 2015. Preliminary studies on the population ecology based on fish otolith microstructure and microchemistry[D]. Qingdao: Ocean University of China. (in Chinese with English abstract) | |
[9] | 谢斌, 李云凯, 张虎, 等, 2017. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 28(7): 2292-2298. |
XIE BIN, LI YUNKAI, ZHANG HU, et al, 2017. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 28(7): 2292-2298. (in Chinese with English abstract) | |
[10] |
徐军, 张敏, 谢平, 2010. 氮稳定同位素基准的可变性及对营养级评价的影响[J]. 湖泊科学, 22(1): 8-20.
doi: 10.18307/2010.0102 |
XU JUN, ZHANG MIN, XIE PING, 2010. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling[J]. Journal of Lake Sciences, 22(1): 8-20. (in Chinese with English abstract)
doi: 10.18307/2010.0102 |
|
[11] | 徐姗楠, 郭建忠, 范江涛, 等, 2020. 夏季大亚湾鱼类群落结构与多样性[J]. 生态学杂志, 39(4): 1254-1264. |
XU SHANNAN, GUO JIANZHONG, FAN JIANGTAO, et al, 2020. Fish community structure and diversity in Daya Bay in summer[J]. Chinese Journal of Ecology, 39(4): 1254-1264. (in Chinese with English abstract) | |
[12] | 杨文超, 黄道建, 陈继鑫, 等, 2020. 大亚湾近十年沉积物中汞、砷分布及污染评价[J]. 水产科学, 39(6): 915-921. |
YANG WENCHAO, HUANG DAOJIAN, CHEN JIXIN, et al, 2020. Distribution and pollution assessment of Hg and As contents in surface sediments of Daya Bay in the past ten years[J]. Fisheries Science, 39(6): 915-921. (in Chinese with English abstract) | |
[13] | 曾艳艺, 赖子尼, 杨婉玲, 等, 2018. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志, 37(1): 194-202. |
ZENG YANYI, LAI ZINI, YANG WANLING, et al, 2018. Trophic spectrum of fishery species from the Pearl River Estuary by stable isotope analysis[J]. Chinese Journal of Ecology, 37(1): 194-202. (in Chinese with English abstract) | |
[14] | 张硕, 高世科, 于雯雯, 等, 2019. 碳、氮稳定同位素在构建海洋食物网及生态系统群落结构中的研究进展[J]. 水产养殖, 40(7): 6-10. |
ZHANG SHUO, GAO SHIKE, YU WENWEN, et al, 2019. Research progress of stable carbon and nitrogen isotopes in the construction of marine food web and ecosystem community structure[J]. Journal of Aquaculture, 40(7): 6-10. (in Chinese with English abstract) | |
[15] | 张文博, 黄洪辉, 李纯厚, 等, 2019. 华南典型海湾主要渔业生物碳氮稳定同位素研究[J]. 南方水产科学, 15(5): 9-14. |
ZHANG WENBO, HUANG HONGHUI, LI CHUNHOU, et al, 2019. Study on carbon and nitrogen stable isotopes of main fishery species in typical gulf, southern China[J]. South China Fisheries Science, 15(5): 9-14. (in Chinese with English abstract) | |
[16] |
BODE A, CARRERA P, GONZÁLEZ-NUEVO G, et al, 2018. A trophic index for sardine (Sardina pilchardus) and its relationship to population abundance in the southern Bay of Biscay and adjacent waters of the NE Atlantic[J]. Progress in Oceanography, 166: 139-147.
doi: 10.1016/j.pocean.2017.08.005 |
[17] |
DE SMET B, FOURNIER J, DE TROCH M, et al, 2015. Integrating ecosystem engineering and food web ecology: testing the effect of biogenic reefs on the food Web of a soft-bottom intertidal area[J]. PLoS One, 10(10): e0140857.
doi: 10.1371/journal.pone.0140857 |
[18] |
HOBSON K A, FISK A, KARNOVSKY N, et al, 2002. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22-23): 5131-5150.
doi: 10.1016/S0967-0645(02)00182-0 |
[19] |
HUSSEY N E, MACNEIL M A, MCMEANS B C, et al, 2014. Rescaling the trophic structure of marine food webs[J]. Ecology Letters, 17(2): 239-250.
doi: 10.1111/ele.12226 |
[20] |
JACKSON M C, DONOHUE I, JACKSON A L, et al, 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology[J]. PLoS One, 7(2): e31757.
doi: 10.1371/journal.pone.0031757 |
[21] |
LAYMAN C A, ARRINGTON D A, MONTAÑA C G, et al, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure[J]. Ecology, 88(1): 42-48.
doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 |
[22] |
MATTHEWS B, MAZUMDER A, 2005. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation[J]. Limnology and Oceanography, 50(5): 1404-1414.
doi: 10.4319/lo.2005.50.5.1404 |
[23] |
MCMEANS B C, ROONEY N, ARTS M T, et al, 2013. Food web structure of a coastal Arctic marine ecosystem and implications for stability[J]. Marine Ecology Progress Series, 482: 17-28.
doi: 10.3354/meps10278 |
[24] |
PAULY D, PALOMARES M L, FROESE R, et al, 2001. Fishing down Canadian aquatic food webs[J]. Canadian Journal of Fisheries and Aquatic Sciences, 58(1): 51-62.
doi: 10.1139/f00-193 |
[25] |
POST D M, 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions[J]. Ecology, 83(3): 703-718.
doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 |
[26] |
SABEEL R A O, INGELS J, PAPE E, et al, 2015. Macrofauna along the Sudanese Red Sea coast: potential effect of mangrove clearance on community and trophic structure[J]. Marine Ecology, 36(3): 794-809.
doi: 10.1111/maec.12184 |
[27] |
SÁNCHEZ-HERNÁNDEZ J, AMUNDSEN P A, 2018. Ecosystem type shapes trophic position and omnivory in fishes[J]. Fish and Fisheries, 19(6): 1003-1015.
doi: 10.1111/faf.12308 |
[28] |
YING RUI, CAO YITING, YIN FANGMIN, et al, 2020. Trophic structure and functional diversity reveal pelagic-benthic coupling dynamic in the coastal ecosystem of Daya Bay, China[J]. Ecological Indicators, 113: 106241.
doi: 10.1016/j.ecolind.2020.106241 |
[29] |
ZANDEN M J V, CHANDRA S, ALLEN B C, et al, 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) Basin[J]. Ecosystems, 6(3): 274-288.
doi: 10.1007/s10021-002-0204-7 |
[30] |
ZANDEN M J V, FETZER W W, 2007. Global patterns of aquatic food chain length[J]. Oikos, 116(8): 1378-1388.
doi: 10.1111/j.0030-1299.2007.16036.x |
[31] |
ZHOU LINBIN, HUANG LIANGMIN, TAN YEHUI, et al, 2015. Size-based analysis of a zooplankton community under the influence of the Pearl River plume and coastal upwelling in the northeastern South China Sea[J]. Marine Biology Research, 11(2): 168-179.
doi: 10.1080/17451000.2014.904882 |
[1] | XI Chen, LIN Zongxuan, SA Rula, DENG Xi, LIU Qiang, NI Liang, LUO Laicai, MA Teng, XIE Zhijie, CHEN Siruo, CHEN Songze. Analysis of water environmental changes and influencing factors in the southwestern waters of the Daya Bay based on continuous monitoring data from dual buoys [J]. Journal of Tropical Oceanography, 2024, 43(4): 153-164. |
[2] | SUN Cuici, YUE Weizhong, ZHAO Wenjie, WANG Youshao. Distribution of the microbial Carbohydrate-Active enzymes genes in the surface sediment of the Daya Bay, China [J]. Journal of Tropical Oceanography, 2023, 42(5): 76-91. |
[3] | SONG Xingyu, LIN Yajun, ZHANG Liangkui, XIANG Chenhui, HUANG Yadong, ZHENG Chuanyang. Distribution characteristics and influencing factors of meso- and micro-zooplankton communities in the offshore waters of the Guangdong-Hong Kong-Macao Greater Bay Area* [J]. Journal of Tropical Oceanography, 2023, 42(3): 136-148. |
[4] | JIANG Xun, WU Wen, SONG Dehai. Identification and quantitative analysis of key controlling factors of water quality response to human activities in the Daya Bay, China [J]. Journal of Tropical Oceanography, 2023, 42(1): 182-191. |
[5] | CHEN Jingfu, ZHONG Yu, WANG Lei, GUO Yupei, QIU Dajun. Noctiluca scintillans effects on eukaryotic plankton community structure using Environmental DNA analysis in Daya Bay* [J]. Journal of Tropical Oceanography, 2022, 41(5): 121-132. |
[6] | LI Yao, XIANG Chenhui, JIANG Zhijian, SONG Xingyu. Production and metabolism characteristics of planktonic community and their influencing factors in Daya Bay during summer* [J]. Journal of Tropical Oceanography, 2021, 40(6): 83-92. |
[7] | XIANG Chenhui, LIU Jiaxing, KE Zhixin, ZHOU Linbin, TAN Yehui. Phytoplankton responses to Dan’ao River estuary water enrichment in terms of size structure and community composition* [J]. Journal of Tropical Oceanography, 2021, 40(2): 49-60. |
[8] | ZHANG Liming, TAN Yehui, LI Jiajun, HUANG Xiaoping, LIU Jiaxing. Characteristics of the phytoplankton community and its response to Dan’ao River input in Daya Bay in summer* [J]. Journal of Tropical Oceanography, 2020, 39(5): 43-54. |
[9] | Hui WANG,Hengxiang LI,Lu LI,Yan YAN. The population distribution of Hyale grandicornis in macroalgae canopies of Daya Bay [J]. Journal of Tropical Oceanography, 2019, 38(4): 52-58. |
[10] | Fuwu XIE, Xingyu SONG, Yehui TAN, Meiting TAN, Yadong HUANG, Huaxue LIU. Impact of simulated warming and nutrients input on plankton community metabolism in Daya Bay* [J]. Journal of Tropical Oceanography, 2019, 38(2): 48-57. |
[11] | Jiaxing HUANG, Yuyan GONG, Shannan XU, Huanhuan WANG, Kui ZHANG, Jun ZHANG, Zuozhi CHEN. Characteristics of stable carbon and nitrogen isotopes of major fishery organisms in the fishing ground of central western South China Sea [J]. Journal of Tropical Oceanography, 2019, 38(1): 76-84. |
[12] | Fuwu XIE, Huaxue LIU, Honghui HUANG, Xingyu SONG. Effects of thermal discharge and nutrients input on size structure of phytoplankton in Daya Bay [J]. Journal of Tropical Oceanography, 2018, 37(3): 55-64. |
[13] | Cuilian XU, Tao LI, Simin HU, Youjun WANG, Hui HUANG, Sheng LIU. In situ feeding of copepodites in the water near Daya Bay nuclear power plant [J]. Journal of Tropical Oceanography, 2018, 37(2): 17-25. |
[14] | Wen WU, Yuhan YAN, Dehai SONG. Study on the tidal dynamics in Daya Bay, China — Part I. Observation and numerical simulation of tidal dynamic system [J]. Journal of Tropical Oceanography, 2017, 36(3): 34-45. |
[15] | Yuhan YAN, Wen WU, Dehai SONG, Xianwen BAO. Study on the tidal dynamics in Daya Bay, China — Part Ⅱ. The generation of double high waters and double-peak flood-current flows [J]. Journal of Tropical Oceanography, 2017, 36(3): 46-54. |
|