Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (2): 65-76.doi: 10.11978/2021034CSTR: 32234.14.2021034
• Marine Remote Sensing • Previous Articles Next Articles
CHEN Qiong1,2(), TANG Shilin1,3(
), WU Jie1,3
Received:
2021-03-12
Revised:
2021-04-20
Online:
2022-03-10
Published:
2021-04-20
Contact:
TANG Shilin
E-mail:chenqiong18@mails.ucas.ac.cn;sltang@scsio.ac.cn
Supported by:
CLC Number:
CHEN Qiong, TANG Shilin, WU Jie. Spatial-temporal variation of suspended sediment in the Pearl River Estuary retrieved from GF-4 satellite data*[J].Journal of Tropical Oceanography, 2022, 41(2): 65-76.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 陈晓玲, 袁中智, 李毓湘, 等, 2005. 基于遥感反演结果的悬浮泥沙时空动态规律研究--以珠江河口及邻近海域为例[J]. 武汉大学学报信息科学版, 30(8): 677-681. |
CHEN XIAOLING, YUAN ZHONGZHI, LI YUXIANG, et al, 2005. Spatial and temporal dynamics of suspended sediment concentration in the Pearl River estuary based on remote sensing[J]. Geomatics and Information Science of Wuhan University, 30(8): 677-681. (in Chinese with English abstract) | |
[2] | 国家海洋信息中心, 2020. 潮汐表(第3册): 台湾海峡至北部湾[M]. 北京: 海洋出版社. |
NATIONAL MARINE DATA AND INFORMATION SERVICE, 2020. Tide tables (Vol. 3): from the Taiwan Straits to the Beibu Gulf[M]. Beijing: Ocean Press. (in Chinese) | |
[3] |
李春初, 1997. 论河口体系及其自动调整作用--以华南河流为例[J]. 地理学报, 52(4): 353-360.
doi: 10.11821/xb199704009 |
LI CHUNCHU, 1997. On the estuarine system and its automatic adjustment[J]. Acta Geographica Sinica, 52(4): 353-360. (in Chinese with English abstract)
doi: 10.11821/xb199704009 |
|
[4] | 刘大召, 李卓, 陈仔豪, 等, 2020. 基于高分1号遥感数据港珠澳大桥对珠江口海域悬浮泥沙分布的影响[J]. 广东海洋大学学报, 40(6): 89-95. |
LIU DAZHAO, LI ZHUO, CHEN ZIHAO, et al, 2020. Influence of Hong Kong-Zhuhai-Macao bridge on the distribution of suspended sediment in the Pearl River Estuary[J]. Journal of Guangdong Ocean University, 40(6): 89-95. (in Chinese with English abstract) | |
[5] | 刘汾汾, 陈楚群, 唐世林, 等, 2009. 基于现场光谱数据的珠江口MERIS悬浮泥沙分段算法[J]. 热带海洋学报, 28(1): 9-14. |
LIU FENFEN, CHEN CHUQUN, TANG SHILIN, et al, 2009. A piecewise algorithm for retrieval of suspended sediment concentration based on in situ spectral data by MERIS in Zhujiang River Estuary[J]. Journal of Tropical Oceanography, 28(1): 9-14. (in Chinese with English abstract) | |
[6] | 刘凤晶, 李果, 于登云, 等, 2018. 高分四号卫星及应用概况[J]. 卫星应用, (12): 12-18. (in Chinese) |
[7] | 栾虹, 付东洋, 李明杰, 等, 2017. 基于Landsat 8珠江口悬浮泥沙四季遥感反演与分析[J]. 海洋环境科学, 36(6): 892-897. |
LUAN HONG, FU DONGYANG, LI MINGJIE, et al, 2017. Based on Landsat 8 suspended sediment concentration of the Pearl River on each season inversion and analysis[J]. Marine Environmental Science, 36(6): 892-897. (in Chinese with English abstract) | |
[8] | 谢梅芳, 张萍, 杨昊, 等, 2021. 珠江“伶仃洋河口湾-虎门-潮汐通道”的潮波传播特征[J]. 热带海洋学报, 40(4): 1-13. |
XIE MEIFANG, ZHANG PING, YANG HAO, et al, 2021. Tidal wave propagation dynamics in “Lingdingyang Bay-Humen outlet-tidal channel” of the Pearl River[J]. Journal of Tropical Oceanography, 40(4): 1-13. (in Chinese with English abstract) | |
[9] | 詹伟康, 吴颉, 韦惺, 等, 2019. 基于遥感反演的珠江河口表层悬沙浓度分位数趋势分析[J]. 热带海洋学报, 38(3): 32-42. |
ZHAN WEIKANG, WU JIE, WEI XING, et al, 2019. Quantile trend analysis for suspended sediment concentration in the Pearl River Estuary based on remote sensing[J]. Journal of Tropical Oceanography, 38(3): 32-42. (in Chinese with English abstract) | |
[10] | 朱樊, 欧素英, 张铄涵, 等, 2015. 基于MODIS影像的珠江口表层悬沙浓度反演及时空变化分析[J]. 泥沙研究, (2): 67-73. |
ZHU FAN, OU SUYING, ZHANG SHUOHAN, et al, 2015. MODIS images-based retrieval and analysis of spatial-temporal change of superficial suspended sediment concentration in the Pearl River Estuary[J]. Journal of Sediment Research, (2): 67-73. (in Chinese with English abstract) | |
[11] |
AHMAD Z, FRANZ B A, MCCLAIN C R, et al, 2010. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans[J]. Applied Optics, 49(29): 5545-5560.
doi: 10.1364/AO.49.005545 |
[12] |
AMANTE C, EAKINS B W, 2009. ETOPO 1 1 Arc-minute global relief model: procedures, data sources and analysis[Z]. Boulder: NOAA, doi: 10.7289/V5C8276M.
doi: 10.7289/V5C8276M |
[13] |
CHAMI M, LARNICOL M, MIGEON S, et al, 2020. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications[J]. Optics Express, 28(10): 15314-15330.
doi: 10.1364/OE.393048 |
[14] |
CHEN XIAOHONG, CHEN YONGQIN, LAI GUOYOU, 2005. Modeling transportation of suspended solids in Zhujiang River estuary, South China[J]. Chinese Journal of Oceanology and Limnology, 23(1): 1-10.
doi: 10.1007/BF02845136 |
[15] |
CHENG ZHIXIN, WANG XIAOHUA, PAULL D, et al, 2016. Application of the geostationary ocean color imager to mapping the diurnal and seasonal variability of surface suspended matter in a Macro-Tidal Estuary[J]. Remote Sensing, 8(3): 244.
doi: 10.3390/rs8030244 |
[16] |
GORDON H R,WANG MENGHUA, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the Oceans with SeaWiFs: a preliminary algorithm[J]. Applied Optics, 33(3): 443-452.
doi: 10.1364/AO.33.000443 |
[17] |
HE QUANJUN, CHEN CHUQUAN, 2014. A new approach for atmospheric correction of MODIS imagery in turbid coastal waters: a case study for the Pearl River Estuary[J]. Remote Sensing Letters, 5(3): 249-257.
doi: 10.1080/2150704X.2014.898192 |
[18] |
HE XIANQIANG, BAI YAN, PAN DELU, et al, 2013. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 133: 225-239.
doi: 10.1016/j.rse.2013.01.023 |
[19] |
HU YUEKAI, YU ZHIFENG, ZHOU BIN, et al, 2019. Tidal- driven variation of suspended sediment in Hangzhou Bay based on GOCI data[J]. International Journal of Applied Earth Observation and Geoinformation, 82: 101920.
doi: 10.1016/j.jag.2019.101920 |
[20] | JIANG SIYI, XU FANGJIAN, LI YAN, et al, 2014. Distributional characteristics of grain sizes of surface sediments in the Zhujiang River Estuary[J]. Acta Oceanologica Sinica, 33(4): 30-36. |
[21] | LI FENG, FU JIE, XIN LEI, et al, 2017. New developments in super-resolution for GaoFen-4[C]// Proceedings of SPIE 10427, image and signal processing for remote sensing ⅩⅩⅢ. Warsaw: SPIE. |
[22] |
LI FENG, XIN LEI, GUO YI, et al, 2018. Super-Resolution for GaoFen-4 remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 15(1): 28-32.
doi: 10.1109/LGRS.2017.2768331 |
[23] |
LI PENG, KE YINGHAI, BAI JUNHONG, et al, 2019. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data[J]. Marine Pollution Bulletin, 149: 110518.
doi: 10.1016/j.marpolbul.2019.110518 |
[24] | LI ZHANHAI, LI M Z, DAI ZHIJUN, et al, 2015. Intratidal and neap-spring variations of suspended sediment concentrations and sediment transport processes in the North Branch of the Changjiang Estuary[J]. Acta Oceanologica Sinica, 34(1): 137-147. |
[25] | LIAO YINGDI, ZHANG WEI, CHEN DA, 2010. A study on the quantitative model of surface suspended sediment concentration in Yangtze estuary from seaWiFS data[J]. IEEE. |
[26] |
LIU FENFEN, ZHANG TONGHUI, YE HAIBIN, et al, 2021. Using satellite remote sensing to study the effect of sand excavation on the suspended sediment in the Hong Kong-Zhuhai-Macau Bridge Region[J]. Water, 13(4): 435.
doi: 10.3390/w13040435 |
[27] | LIU GUANGPING, CAI SHUQUN, 2019. Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary[J]. Acta Oceanologica Sinica, 38(7): 22-35. |
[28] |
LIU JIA, LIU JIAHANG, HE XIANQIANG, et al, 2018. Diurnal dynamics and seasonal variations of total suspended particulate matter in highly turbid Hangzhou Bay waters based on the geostationary ocean color imager[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7): 2170-2180.
doi: 10.1109/JSTARS.4609443 |
[29] | LIU RUNQI, WANG YAPING, GAO JIANHUA, et al, 2016. Turbidity maximum formation and its seasonal variations in the Zhujiang (Pearl River) Estuary, southern China[J]. Acta Oceanologica Sinica, 35(8): 22-31. |
[30] | MAYO M, KARNIELI A, GITELSON A, et al, 1993. Determination of suspended sediment concentrations from CZCS data[J]. Photogrammetric Engineering and Remote Sensing, 59(8): 1265-1269. |
[31] | OU SUYING, YANG QINGSHU, LUO XIANGXIN, et al, 2019. The influence of runoff and wind on the dispersion patterns of suspended sediment in the Zhujiang (Pearl) River Estuary based on MODIS data[J]. Acta Oceanologica Sinica, 38(3): 26-35. |
[32] |
RUDDICK K G, OVIDIO F, RIJKEBOER M, 2000. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 39(6): 897-912.
doi: 10.1364/AO.39.000897 |
[33] |
SCANES P, COADE G, DOHERTY M, et al, 2007. Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia[J]. Estuarine, Coastal and Shelf Science, 74(1-2): 306-319.
doi: 10.1016/j.ecss.2007.04.021 |
[34] |
SIEGEL D A, WANG M H, MARITORENA S, et al, 2000. Atmospheric correction of satellite ocean color imagery: the black pixel assumption[J]. Applied Optics, 39(21): 3582-3591.
doi: 10.1364/AO.39.003582 |
[35] |
TANG SHILIN, LAROUCHE P, NIEMI A, et al, 2013. Regional algorithms for remote-sensing estimates of total suspended matter in the Beaufort Sea[J]. International Journal of Remote Sensing, 34(19): 6562-6576.
doi: 10.1080/01431161.2013.804222 |
[36] |
TIAN LIQIAO, WAI O W H, CHEN XIAOLING, et al, 2016. Retrieval of total suspended matter concentration from Gaofen-1 Wide Field Imager (WFI) multispectral imagery with the assistance of Terra MODIS in turbid water-case in Deep Bay[J]. International Journal of Remote Sensing, 37(14): 3400-3413.
doi: 10.1080/01431161.2016.1199084 |
[37] |
TOMING K, KUTSER T, UIBOUPIN R, et al, 2017. Mapping water quality parameters with sentinel-3 ocean and land colour instrument imagery in the Baltic Sea[J]. Remote Sensing, 9(10): 1070.
doi: 10.3390/rs9101070 |
[38] | WANG DIANZHONG, HE HONGYAN, 2017. Observation capability and application prospect of GF-4 satellite[M]// ZHANGGUANGJUN. 3rd international symposium of space optical instruments and applications. Cham: Springer: 393-401. |
[39] |
WANG FAN, ZHOU BIN, LIU XINGMEI, et al, 2012. Remote-sensing inversion model of surface water suspended sediment concentration based on in situ measured spectrum in Hangzhou Bay, China[J]. Environmental Earth Sciences, 67(6): 1669-1677.
doi: 10.1007/s12665-012-1608-0 |
[40] |
WANG MENGHUA, SHI WEI, 2007. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing[J]. Optics Express, 15(24): 15722-15733.
doi: 10.1364/OE.15.015722 |
[41] |
WU JIE, CHEN CHUQUN, NUKAPOTHULA S, 2019. Atmospheric correction of GOCI using quasi-synchronous VIIRS data in highly turbid coastal waters[J]. Remote Sensing, 12(1): 89.
doi: 10.3390/rs12010089 |
[42] |
XIONG JILIAN, WANG XIAOHUA, WANG YAPING, et al, 2017. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 191: 221-233.
doi: 10.1016/j.ecss.2017.04.023 |
[43] |
YE HAIBIN, CHEN CHUQUN, YANG CHAOYU, 2017. Atmospheric correction of landsat-8/OLI imagery in turbid estuarine waters: a case study for the pearl river estuary[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(1): 252-261.
doi: 10.1109/JSTARS.4609443 |
[44] |
YEPEZ S, LARAQUE A, MARTINEZ J M, et al, 2018. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela)[J]. Comptes Rendus Geoscience, 350(1-2): 20-30.
doi: 10.1016/j.crte.2017.08.004 |
[45] |
YU QIAN, WANG YAPING, FLEMMING B, et al, 2012. Tide-induced suspended sediment transport: depth-averaged concentrations and horizontal residual fluxes[J]. Continental Shelf Research, 34: 53-63.
doi: 10.1016/j.csr.2011.11.015 |
[46] |
ZENG XIANGMING, HE RUOYING, XUE ZUO, et al, 2015. River-derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: A preliminary modeling study[J]. Continental Shelf Research, 111: 112-125.
doi: 10.1016/j.csr.2015.08.015 |
[47] |
ZIEGLER C K, LICK W, 1988. The transport of fine-grained sediments in shallow waters[J]. Environmental Geology and Water Sciences, 11(1): 123-132.
doi: 10.1007/BF02587771 |
|