Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (5): 74-88.doi: 10.11978/2021165CSTR: 32234.14.2021165
• Marine Geology • Previous Articles Next Articles
HAN Xue1,2,3(), XU Weihai1,2(
), LUO Yun1,2, LI Gang1,2, LIU Jianguo1,2, ZHU Xiaowei1,2, CHENG Jun1,2,3, MIAO Li1,2, XIANG Rong1,2, YAN Wen1,2,3(
)
Received:
2021-11-24
Revised:
2022-01-14
Online:
2022-09-10
Published:
2022-01-20
Contact:
XU Weihai, YAN Wen
E-mail:hanxue191@scsio.ac.cn;whxu@scsio.ac.cn;wyan@scsio.ac.cn
Supported by:
CLC Number:
HAN Xue, XU Weihai, LUO Yun, LI Gang, LIU Jianguo, ZHU Xiaowei, CHENG Jun, MIAO Li, XIANG Rong, YAN Wen. Preliminary studies on the development characteristics of reef dolostones and the formation mechanism of iron dolomite in the Well Nanke 1, Nansha Islands*[J].Journal of Tropical Oceanography, 2022, 41(5): 74-88.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 陈北辰, 2020. 南海生物礁滩体系发育演化及其南北陆缘差异—基于XK1和NK1井精细刻画[D]. 武汉: 中国地质大学(武汉): 1-125. |
CHEN BEICHEN, 2020. Evolution of reef-bank system in the north and south continental margins of South China Sea and their difference — Examples for the fine characterization of wells XK1 and NK1[D]. Wuhan: China University of Geosciences (Wuhan): 1-125. (in Chinese with English abstract) | |
[2] | 陈天宇, 蔡平河, 李伟强, 等, 2019. 大洋溶解铁的物质来源及其同位素示踪[J]. 海洋地质与第四纪地质, 39(5): 46-57. |
CHEN TIANYU, CAI PINGHE, LI WEIQIANG, et al, 2019. The sources of dissolved iron in the global ocean and isotopic tracing[J]. Marine Geology & Quaternary Geology, 39(5): 46-57. (in Chinese with English abstract) | |
[3] | 方少仙, 侯方浩, 何江, 等, 2013. 碳酸盐岩成岩作用[M]. 北京: 地质出版社: 1-230. (in Chinese) |
[4] | 何起祥, 张明书, 1990. 西沙群岛新第三纪白云岩的成因与意义[J]. 海洋地质与第四纪地质, 10(2): 45-55. |
HE QIXIANG, ZHANG MINGSHU, 1990. Origin of Neogene dolomites in Xisha Islands and their significance[J]. Marine Geology & Quaternary Geology, 10(2): 45-55. (in Chinese with English abstract) | |
[5] | 黄思静, 1992. 碳酸盐矿物的阴极发光性与其Fe, Mn含量的关系[J]. 矿物岩石, 12(4): 74-79. |
HUANG SIJING, 1992. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Mineralogy and Petrology, 12(4): 74-79. (in Chinese with English abstract) | |
[6] |
林紫云, 余克服, 施祺, 等, 2016. 三沙市美济礁滨珊瑚记录的近百年海面温度变化[J]. 热带地理, 36(1): 27-33.
doi: 10.13284/j.cnki.rddl.002804 |
LIN ZIYUN, YU KEFU, SHI QI, et al, 2016. Sea surface temperature variations during the Last 100 Years recorded in a porites coral from the mischief reef of Sansha city[J]. Tropical Geography, 36(1): 27-33. (in Chinese with English abstract) | |
[7] |
罗云, 黎刚, 徐维海, 等, 2022. 南科1井第四系暴露面特征及其与海平面变化的关系[J]. 热带海洋学报, 41(1): 143-157.
doi: 10.11978/2021013 |
LUO YUN, LI GANG, XU WEIHAI, et al, 2022. Characteristics of Quaternary exposure surfaces in Well Nanke 1 and its relationship with sea level changes[J]. Journal of Tropical Oceanography, 41(1): 143-157. (in Chinese with English abstract) | |
[8] | 庞江, 罗静兰, 马永坤, 等, 2019. 白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系[J]. 地质学报, 93(3): 724-737. |
PANG JIANG, LUO JINGLAN, MA YONGKUN, et al, 2019. Forming mechanism of ankerite in Tertiary reservoir of the Baiyun sag, Pearl River Mouth basin, and its relationship to CO2-bearing fluid activity[J]. Acta Geologica Sinica, 93(3): 724-737. (in Chinese with English abstract) | |
[9] | 沈江远, 闫琢玉, 付和平, 等, 2021. 西永2井中新统铁白云岩空间变异特征及成因[J]. 海洋地质前沿, 37(6): 39-48. |
SHEN JIANGYUAN, YAN ZHUOYU, FU HEPING, et al, 2021. Spatial variation and genesis of Miocene ankerite in well Xiyong 2[J]. Marine Geology Frontiers, 37(6): 39-48. (in Chinese with English abstract) | |
[10] | 史同强, 2018. 西科1井-西永2井铁白云岩岩相学及其成因特征研究[D]. 青岛: 山东科技大学: 1-62. |
SHI TONGQIANG, 2018. Petrolography and genetic characteristics of Ferroan dolomites from Wells Xike 1 and Xiyong 2[D]. Qing Dao: Shandong University of Science and Technology: 1-62. (in Chinese with English abstract) | |
[11] | 时志强, 谢玉洪, 刘立, 等, 2016. 南海西科1井碳酸盐岩生物礁储层沉积学—储层特征与成岩演化[M]. 武汉: 中国地质大学出版社: 1-175. (in Chinese) |
[12] | 孙剑, 朱祥坤, 2015. 表生过程中铁的同位素地球化学[J]. 地质论评, 61(6): 1370-1382. |
SUN JIAN, ZHU XIANGKUN, 2015. Fe isotope geochemistry of earth surface system[J]. Geological Review, 61(6): 1370-1382. (in Chinese with English abstract) | |
[13] | 王国忠, 2001. 南海珊瑚礁区沉积学[M]. 北京: 海洋出版社: 1-313. (in Chinese) |
[14] | 汪品先, 赵泉鸿, 翦知湣, 等, 2003. 南海三千万年的深海记录[J]. 科学通报, 48(21): 2206-2215. (in Chinese) |
[15] | 王振峰, 时志强, 张道军, 等, 2015. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因[J]. 地球科学—中国地质大学学报, 40(4): 633-644. |
WANG ZHENFENG, SHI ZHIQIANG, ZHANG DAOJUN, et al, 2015. Microscopic features and genesis for Miocene to Pliocene dolomite in Well Xike-1, Xisha Islands[J]. Earth Science — Journal of China University of Geosciences, 40(4): 633-644. (in Chinese with English abstract)
doi: 10.3799/dqkx.2015.050 |
|
[16] | 吴素娟, 黄思静, 孙治雷, 等, 2005. 鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J]. 成都理工大学学报(自然科学版), 32(6): 569-575. |
WU SUJUAN, HUANG SIJING, SUN ZHILEI, et al, 2005. Dolomite cement and its formation mechanism in the Triassic Yanchang sandstone, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 32(6): 569-575. (in Chinese with English abstract) | |
[17] | 许红, 张海洋, 李绪深, 等, 2021. 西永2井铁白云岩Fe同位素地球化学性质及特征[J]. 海洋地质前沿, 37(6): 1-7. |
XU HONG, ZHANG HAIYANG, LI XUSHEN, et al, 2021. Geochemical behaviors and characteristics of iron isotope in the ferroan dolomite from Well Xiyong 2[J]. Marine Geology Frontiers, 37(6): 1-7. (in Chinese with English abstract) | |
[18] | 闫斌, 2009. 陡山沱组盖帽白云岩和黑色页岩的铁同位素特征及其古海洋意义[D]. 北京: 中国地质科学院: 1-95. |
YAN BIN, 2009. Fe isotope features of cap carbonates and black shales in Doushantuo Formation: Implications for Paleo- oceanography[D]. Beijing: Chinese Academy of Geological Sciences: 1-95. (in Chinese with English abstract) | |
[19] | 尤丽, 于亚苹, 廖静, 等, 2015. 西沙群岛西科1井第四纪生物礁中典型暴露面的岩石学与孔隙特征[J]. 地球科学—中国地质大学学报, 40(4): 671-676. |
YOU LI, YU YAPING, LIAO JING, et al, 2015. Petrological characteristics and pore types of Quaternary reef adjacent typical exposed surface in Well Xike-1, Xisha Islands[J]. Earth Science — Journal of China University of Geosciences, 40(4): 671-676. (in Chinese with English abstract)
doi: 10.3799/dqkx.2015.054 |
|
[20] | 由雪莲, 贾文强, 徐帆, 等, 2018. 铁白云石矿物学特征及原生次生成因机制[J]. 地球科学, 43(11): 4046-4055. |
YOU XUELIAN, JIA WENQIANG, XU FAN, et al, 2018. Mineralogical characteristics of ankerite and mechanisms of primary and secondary origins[J]. Earth Science, 43(11): 4046-4055. (in Chinese with English abstract) | |
[21] | 詹文欢, 孙宗勋, 张乔民, 等, 2002. 南沙群岛海区珊瑚礁灾害性地质分析[J]. 热带海洋学报, 21(2): 58-65. |
ZHAN WENHUAN, SUN ZONGXUN, ZHANG QIAOMIN, et al, 2002. Hazardous geology of coral reefs in southern South China Sea[J]. Journal of Tropical Oceanography, 21(2): 58-65. (in Chinese with English abstract) | |
[22] | 张敏强, 黄思静, 吴志轩, 等, 2007. 东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J]. 成都理工大学学报(自然科学版), 34(3): 259-266. |
ZHANG MINQIANG, HUANG SIJING, WU ZHIXUAN, et al, 2007. Carbonate cements and their formation mechanism in Palaeogene sandstones of Lishui sag, East China Sea basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 34(3): 259-266. (in Chinese with English abstract) | |
[23] | 赵强, 2010. 西沙群岛海域生物礁碳酸盐岩沉积学研究[D]. 青岛: 中国科学院研究生院(海洋研究所): 1-170 |
ZHAO QIANG, 2010. The sedimentary research about reef carbonatite in Xisha Islands waters[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences: 1-170. (in Chinese with English abstract) | |
[24] | 中国科学院南沙综合科学考察队, 1992. 南沙群岛永暑礁第四纪珊瑚礁地质[M]. 北京: 海洋出版社:1-264. |
NANSHA COMPREHENSIVE SCIENTIFIC INVESTIGATION TEAM OF CHINESE ACADEMY OF SCIENCES, 1992. Quaternary coral reef geology of Yongshu reef, Nansha islands[M]. Beijing: China Ocean Press: 1-264. (in Chinese) | |
[25] | 朱袁智, 沙庆安, 郭丽芬, 等, 1997. 南沙群岛永暑礁新生代珊瑚礁地质[M]. 北京: 科学出版社:1-134. |
ZHU YUANZHI, SHA QING’AN, GUO LIFEN, et al, 1997. Cenozoic coral reef geology of Yongshu reef, Nansha Islands[M]. Beijing: Science Press: 1-134. (in Chinese) | |
[26] | ALIBO D S, NOZAKI Y, 2000. Dissolved rare earth elements in the South China Sea: geochemical characterization of the water masses[J]. Journal of Geophysical Research: Oceans, 105(C12): 28771-28783. |
[27] |
ARVIDSON R S, MACKENZIE F T, 1999. The dolomite problem; control of precipitation kinetics by temperature and saturation state[J]. American Journal of Science, 299(4): 257-288.
doi: 10.2475/ajs.299.4.257 |
[28] |
BEARD B L, JOHNSON C M, VON DAMM K L, et al, 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 31(7): 629-632.
doi: 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2 |
[29] |
BERGQUIST B A, BOYLE E A, 2006. Iron isotopes in the Amazon River system: weathering and transport signatures[J]. Earth and Planetary Science Letters, 248(1-2): 54-68.
doi: 10.1016/j.epsl.2006.05.004 |
[30] |
BOLES J R, 1978. Active ankerite cementation in the subsurface Eocene of Southwest Texas[J]. Contributions to Mineralogy and Petrology, 68(1): 13-22.
doi: 10.1007/BF00375443 |
[31] |
BUDD D A, 1997. Cenozoic dolomites of carbonate islands: Their attributes and origin[J]. Earth-Science Reviews, 42(1-2): 1-47.
doi: 10.1016/S0012-8252(96)00051-7 |
[32] | CHANG BIAO, LI CHAO, LIU DENG, et al, 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(25): 14005-14014. |
[33] |
CHENG JUN, WANG SHUHONG, LI GANG, et al, 2022. Origin of large-scale variegated reef limestones in the southern South China Sea: Implications for Miocene regional and global geological evolution[J]. Journal of Asian Earth Sciences, 230: 105202.
doi: 10.1016/j.jseaes.2022.105202 |
[34] |
CLARKSON M O, POULTON S W, GUILBAUD R, et al, 2014. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments[J]. Chemical Geology, 382: 111-122.
doi: 10.1016/j.chemgeo.2014.05.031 |
[35] |
CONWAY T M, JOHN S G, 2014. Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 511(7508): 212-215.
doi: 10.1038/nature13482 |
[36] |
DING WEIWEI, LI JIABIAO, DONG CONGZHI, et al, 2015. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution[J]. Marine Geophysical Research, 36(2): 149-165.
doi: 10.1007/s11001-014-9237-5 |
[37] |
DOUVILLE E, BIENVENU P, CHARLOU J L, et al, 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 63(5): 627-643.
doi: 10.1016/S0016-7037(99)00024-1 |
[38] |
GREGG J M, BISH D L, KACZMAREK S E, et al, 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 62(6): 1749-1769.
doi: 10.1111/sed.12202 |
[39] |
GUO YANGRUI, DENG WENFENG, LIU XI, et al, 2021. Clumped isotope geochemistry of island carbonates in the South China Sea: Implications for early diagenesis and dolomitization[J]. Marine Geology, 437: 106513.
doi: 10.1016/j.margeo.2021.106513 |
[40] |
HALVERSON G P, HOFFMAN P F, SCHRAG D P, et al, 2005. Toward a Neoproterozoic composite carbon-isotope record[J]. GSA Bulletin, 117(9-10): 1181-1207.
doi: 10.1130/B25630.1 |
[41] | HARDY R G, TUCKER M E, 1988. X-ray powder diffraction of sediments[M]//TUCKER M E. Techniques in sedimentology. Oxford: Blackwell Scientific Publications: 191-228. |
[42] |
HENDRY J P, WILKINSON M, FALLICK A E, et al, 2000. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea[J]. Journal of Sedimentary Research, 70(1): 227-239.
doi: 10.1306/2DC4090D-0E47-11D7-8643000102C1865D |
[43] |
HENDRY J P, 2002. Geochemical trends and palaeohydrological significance of shallow burial calcite and ankerite cements in Middle Jurassic strata on the East Midlands Shelf (onshore UK)[J]. Sedimentary Geology, 151(1-2): 149-176.
doi: 10.1016/S0037-0738(01)00236-6 |
[44] | HENDRY J P, 2003. Ankerite (in sediments)[M]//MIDDLETON G V, CHURCH M J, CONIGLIO M, et al. Encyclopedia of sediments and sedimentary rocks. Dordrecht: Springer: 19-21. |
[45] |
HUTCHISON C S, VIJAYAN V R, 2010. What are the spratly islands?[J]. Journal of Asian Earth Sciences, 39(5): 371-385.
doi: 10.1016/j.jseaes.2010.04.013 |
[46] |
JOHNSON C M, RODEN E E, WELCH S A, et al, 2005. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochimica et Cosmochimica Acta, 69(4): 963-993.
doi: 10.1016/j.gca.2004.06.043 |
[47] |
LAND L S, 1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 4(3): 361-368.
doi: 10.1023/A:1009688315854 |
[48] |
LI GANG, XU WEIHAI, LUO YUN, et al, 2022. Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea[J]. GSA Bulletin, 134, doi: 10.1130/B36365.1
doi: 10.1130/B36365.1 |
[49] |
LI RONG, JONES B, 2014. Evaluation of carbonate diagenesis: a comparative study of minor elements, trace elements, and rare-earth elements (REE + Y) between Pleistocene corals and matrices from Grand Cayman, British West Indies[J]. Sedimentary Geology, 314: 31-46.
doi: 10.1016/j.sedgeo.2014.10.004 |
[50] |
LI SHU, YU KEFU, ZHAO JIANXIN, et al, 2017. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea[J]. Chinese Journal of Oceanology and Limnology, 35(1): 115-121.
doi: 10.1007/s00343-016-5234-7 |
[51] |
LIU JIANGUO, CAO LI, XU WEIHAI, et al, 2022. Formation and development of coral reefs in the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 594: 110957.
doi: 10.1016/j.palaeo.2022.110957 |
[52] |
LUO YUN, LI GANG, XU WEIHAI, et al, 2021. The effect of diagenesis on rare earth element geochemistry of the Quaternary carbonates at an isolated coral atoll in the South China Sea[J]. Sedimentary Geology, 420: 105933.
doi: 10.1016/j.sedgeo.2021.105933 |
[53] |
MACHEL H G, 2004. Concepts and models of dolomitization: a critical reappraisal[J]. Geological Society, London, Special Publications, 235(1): 7-63.
doi: 10.1144/GSL.SP.2004.235.01.02 |
[54] |
MATTHEWS A, MORGANS-BELL H S, EMMANUEL S, et al, 2004. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, Southern England)[J]. Geochimica et Cosmochimica Acta, 68(14): 3107-3123.
doi: 10.1016/j.gca.2004.01.019 |
[55] |
MILLER K G, KOMINZ M A, BROWNING J V, et al, 2005. The Phanerozoic record of global sea-level change[J]. Science, 310(5752): 1293-1298.
pmid: 16311326 |
[56] |
OHDE S, ELDERFIELD H, 1992. Strontium isotope stratigraphy of Kita-daito-jima Atoll, North Philippine Sea: Implications for Neogene sea-level change and tectonic history[J]. Earth and Planetary Science Letters, 113(4): 473-486.
doi: 10.1016/0012-821X(92)90125-F |
[57] |
POITRASSON F, 2006. On the iron isotope homogeneity level of the continental crust[J]. Chemical Geology, 235(1-2): 195-200.
doi: 10.1016/j.chemgeo.2006.06.010 |
[58] |
POULTON S W, CANFIELD D E, 2005. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 214(3-4): 209-221.
doi: 10.1016/j.chemgeo.2004.09.003 |
[59] |
RAISWELL R, CANFIELD D E, 2012. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 1(1): 1-220.
doi: 10.7185/geochempersp.1.1 |
[60] |
REN MIN, JONES B, 2017. Spatial variations in the stoichiometry and geochemistry of Miocene dolomite from Grand Cayman: Implications for the origin of island dolostone[J]. Sedimentary Geology, 348: 69-93.
doi: 10.1016/j.sedgeo.2016.12.001 |
[61] |
SHAO LEI, CUI YUCHI, QIAO PEIJUN, et al, 2017. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 504-516.
doi: 10.1016/j.palaeo.2017.07.006 |
[62] | SIMMS M, 1984. Dolomitization by ground-water flow systems in carbonate platforms[J]. Transactions-Gulf Coast Association of Geological Societies, 34: 411-420. |
[63] |
STEUER S, FRANKE D, MERESSE F, et al, 2014. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea[J]. Marine and Petroleum Geology, 58: 644-657.
doi: 10.1016/j.marpetgeo.2013.12.010 |
[64] |
TAYLOR K G, GAWTHORPE R L, CURTIS C D, et al, 2000. Carbonate cementation in a sequence-stratigraphic framework: upper cretaceous sandstones, Book Cliffs, Utah-Colorado[J]. Journal of Sedimentary Research, 70(2): 360-372.
doi: 10.1306/2DC40916-0E47-11D7-8643000102C1865D |
[65] |
TAYLOR T R, SIBLEY D F, 1986. Petrographic and geochemical characteristics of dolomite types and the origin of ferroan dolomite in the Trenton Formation, Ordovician, Michigan Basin, U.S.A.[J]. Sedimentology, 33(1): 61-86.
doi: 10.1111/j.1365-3091.1986.tb00745.x |
[66] |
THOMPSON R, SMITH P, GIBSON S, et al, 2002. Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite[J]. Contributions to Mineralogy and Petrology, 143(3): 377-396.
doi: 10.1007/s00410-002-0350-0 |
[67] | TUCKER M E, WRIGHT V P, 1990. Dolomites and Dolomitization Models[M]//TUCKER M E, WRIGHT V P. Carbonate sedimentology. Oxford: Blackwell Scientific Publications: 365-400. |
[68] |
VON BLANCKENBURG F, MAMBERTI M, SCHOENBERG R, et al, 2008. The iron isotope composition of microbial carbonate[J]. Chemical Geology, 249(1-2): 113-128.
doi: 10.1016/j.chemgeo.2007.12.001 |
[69] |
WAN SHIMING, CLIFT P D, ZHAO DEBO, et al, 2017. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2[J]. Geochimica et Cosmochimica Acta, 200: 123-144.
doi: 10.1016/j.gca.2016.12.010 |
[70] |
WANG RUI, YU KEFU, JONES B, et al, 2018. Evolution and development of Miocene “island dolostones” on Xisha Islands, South China Sea[J]. Marine Geology, 406: 142-158.
doi: 10.1016/j.margeo.2018.09.006 |
[71] |
WARREN J, 2000. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 52(1-3): 1-81.
doi: 10.1016/S0012-8252(00)00022-2 |
[72] |
WIESLI R A, BEARD B L, JOHNSON C M, 2004. Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems[J]. Chemical Geology, 211(3-4): 343-362.
doi: 10.1016/j.chemgeo.2004.07.002 |
[73] |
XU HONG, ZHANG WEIWEI, WEI KAI, et al, 2018. Ferroan dolomites in Miocene sediments of the Xisha Islands and their genetic model[J]. Journal of Oceanology and Limnology, 36(1): 165-180.
doi: 10.1007/s00343-018-7136-3 |
[74] |
YAMAGUCHI K E, JOHNSON C M, BEARD B L, et al, 2005. Biogeochemical cycling of iron in the Archean- Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons[J]. Chemical Geology, 218(1-2): 135-169.
doi: 10.1016/j.chemgeo.2005.01.020 |
[75] |
YI LIANG, DENG CHENGLONG, YAN WEN, et al, 2021. Neogene-quaternary magnetostratigraphy of the biogenic reef sequence of core NK-1 in Nansha Qundao, South China Sea[J]. Science Bulletin, 66(3): 200-203.
doi: 10.1016/j.scib.2020.08.014 |
[76] |
ZHU XIANGKUN, O’NIONS R K, GUO YUELING, et al, 2000. Secular variation of iron isotopes in North Atlantic Deep Water[J]. Science, 287(5460): 2000-2002.
pmid: 10720322 |
[1] | WANG Jian, CHEN Chuqun, ZHOU Weihua, LI Xiangfu, WU Jie, YE Haibin, TANG Shilin. Estimating the spatial distribution of heterotrophic bacteria abundance in the Northern South China Sea using remote sensing* [J]. Journal of Tropical Oceanography, 2021, 40(5): 53-62. |
[2] | HONG Xiaofan, CHEN Zuozhi, JIANG Yane, ZHANG Jun, WANG Huanhuan, LI Yuanjie, LI Gang. Biological characteristics of Cephalopholis spiloparaea of reef waters in the South China Sea [J]. Journal of Tropical Oceanography, 2021, 40(4): 50-62. |
[3] | LI Kaizhi, REN Yuzheng, KE Zhixin, LI Gang, TAN Yehui. Vertical distributions of epipelagic and mesopelagic zooplankton in the continental slope of the northeastern South China Sea* [J]. Journal of Tropical Oceanography, 2021, 40(2): 61-73. |
|