Journal of Tropical Oceanography ›› 2021, Vol. 40 ›› Issue (5): 53-62.doi: 10.11978/2020125CSTR: 32234.14.2020125
• Marine Biology • Previous Articles Next Articles
WANG Jian1,2,3(), CHEN Chuqun1,2,3(
), ZHOU Weihua4, LI Xiangfu1, WU Jie1, YE Haibin1, TANG Shilin1,3
Received:
2020-10-30
Revised:
2020-12-21
Online:
2021-09-10
Published:
2020-12-24
Contact:
CHEN Chuqun
E-mail:18810916182@163.com;cqchen@scsio.ac.cn
Supported by:
CLC Number:
WANG Jian, CHEN Chuqun, ZHOU Weihua, LI Xiangfu, WU Jie, YE Haibin, TANG Shilin. Estimating the spatial distribution of heterotrophic bacteria abundance in the Northern South China Sea using remote sensing*[J].Journal of Tropical Oceanography, 2021, 40(5): 53-62.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Field observation data in the Northern South China Sea"
观测时间 | 站点个数 | 观测量 |
---|---|---|
2010年8月3—8日, 2011年1月6—10日 | 航次观测位置一致, 各16组数据 | HBA, POC, Chl a |
2015年5月10—12日, 2015年8月7—11日, 2016年1月10—14日, 2017年6月10—15日 | 航次观测位置一致, 各8组数据 | HBA, Chl a |
2004年9月18日—10月3日 | 16组数据 | HBA, POC, Chl a |
2005年9月6—22日 | 17组数据 | HBA, Chl a |
2006年9月15—27日 | 10组数据 | HBA, Chl a |
2014年8月20日 | 5组数据 | HBA |
Tab. 2
Seven well-performing models of heterotrophic bacteria abundance and remote sensing reflectance"
序号 | 模型 | 模型评估 | |||
---|---|---|---|---|---|
R2 | RMSE /(×108个·L-1) | MAPD /% | |||
1 | $\text{HBA}=8.12\times {{\text{e}}^{({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(412))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(412))}}-1.58$ | 0.72 | 3.02 | 30 | |
2 | $\text{HBA}=11.75\times {{\text{e}}^{({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(443))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(443))}}-3.34$ | 0.71 | 3.16 | 32 | |
3 | $\text{HBA}=8.95\times {{\text{e}}^{({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(412))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(412))}}-154.4\times {{\text{e}}^{({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(412))}}+151.8$ | 0.76 | 2.83 | 25 | |
4 | $\text{HBA}=5.81\times {{\text{e}}^{\text{(}{{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(412)\text{)/(}{{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(412)\text{)}}}\text{+0}\text{.41}\times {{\text{e}}^{{{R}_{\text{rs}}}(667)/{{R}_{\text{rs}}}(443)}}-0.35$ | 0.81 | 2.44 | 21 | |
5 | $\begin{align} & \text{HBA}=11.52\times {{\left[ ({{R}_{\text{rs}}}(531)-{{R}_{\text{rs}}}(443))/({{R}_{\text{rs}}}(531)+{{R}_{\text{rs}}}(443)) \right]}^{2}}+ \\& \ \ \ \ \ \ \ \ \ \ 16.38\times ({{R}_{\text{rs}}}(531)-{{R}_{\text{rs}}}(5443))/({{R}_{\text{rs}}}(531)+{{R}_{\text{rs}}}(443))+5.86 \\\end{align}$ | 0.71 | 3.35 | 35 | |
6 | $\begin{align}& \text{HBA}=6.11\times {{\left[ ({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(412))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(412)) \right]}^{2}}+ \\& \ \ \ \ \ \ \ \ \ \ 4.18\times ({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(412))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(412))+5.89 \\\end{align}$ | 0.75 | 2.95 | 28 | |
7 | $\begin{align}& \text{HBA}=11.68\times {{\left[ ({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(443))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(443)) \right]}^{2}}+ \\& \ \ \ \ \ \ \ \ \ \ 14.58\times ({{R}_{\text{rs}}}(551)-{{R}_{\text{rs}}}(443))/({{R}_{\text{rs}}}(551)+{{R}_{\text{rs}}}(443))+5.92 \\\end{align}$ | 0.74 | 2.98 | 29 |
Fig. 4
Comparison between measured bacterial abundance and estimated heterotrophic bacterial abundance verification results. The hollow circle are the verification points of the continental shelf and the open sea area, the filled circle are the verification points of the estuary and coastal waters. The black dotted line is the 1:1 line, and the purple solid line is the fitting line"
[1] | 陈楚群, 施平, 毛庆文, 1996. 应用TM数据估算沿岸海水表层叶绿素浓度模型研究[J]. 环境遥感, 11(3):168-176. |
CHEN CHUQUN, SHI PING, MAO QINGWEN, 1996. Study on modeling chlorophyll concentration of surface coastal water using TM data[J]. Remote Sensing of Environment China, 11(3):168-176 (in Chinese with English abstract). | |
[2] | 杜成功, 李云梅, 王桥, 等, 2016. 面向GOCI数据的太湖总磷浓度反演及其日内变化研究[J]. 环境科学, 37(3):862-872. |
DU CHENGGONG, LI YUNMEI, WANG QIAO, et al, 2016. Inversion model and daily variation of total phosphorus concentrations in Taihu lake based on GOCI data[J]. Environmental Science, 37(3):862-872 (in Chinese with English abstract). | |
[3] | 季凤云, 郭立梅, 李洪波, 等, 2017. 南海北部细菌丰度和细菌生产力分布及其与环境因子相关性[J]. 海洋环境科学, 36(3):354-359. |
JI FENGYUN, GUO LIMEI, LI HONGBO, et al, 2017. Abundance and production of bacteria and their correlations with environmental factor[J]. Marine Environmental Science, 36(3):354-359 (in Chinese with English abstract). | |
[4] | 荆红梅, 韦誉, 郑丽平, 等, 2018. 三亚海域浮游病毒与细菌丰度的时空变化规律以及相关环境因子[J]. 热带海洋学报, 37(2):36-46. |
JING HONGMEI, WEI YU, ZHENG LIPING, et al, 2018. Spatiotemporal variations of virioplankton and bacterioplankton abundance in Sanya waters and their related environmental factors[J]. Journal of Tropical Oceanography, 37(2):36-46 (in Chinese with English abstract). | |
[5] | 李祥付, 徐杰, 施震, 等, 2018. 珠江口异养细菌时空分布特征及其调控机制[J]. 热带海洋学报, 37(1):27-36. |
LI XIANGFU, XU JIE, SHI ZHEN, et al, 2018. Spatial and temporal variation in heterotrophic bacteria and their regulators in the Pearl River Estuary[J]. Journal of Tropical Oceanography, 37(1):27-36 (in Chinese with English abstract). | |
[6] | 逄淑娜, 朱渭宁, 陈江, 等, 2019. Landsat-8的舟山近岸海域总悬浮物遥感反演与时空变异研究[J]. 光谱学与光谱分析, 39(12):3826-3832. |
PANG SHUNA, ZHU WEINING, CHEN JIANG, et al, 2019. Using Landsat-8 to remotely estimate and observe spatio-temporal variations of total suspended matter in Zhoushan coastal regions[J]. Spectroscopy and Spectral Analysis, 39(12):3826-3832 (in Chinese with English abstract). | |
[7] | 王生福, 宋星宇, 黄良民, 等, 2013. 南海北部夏季浮游细菌生长效率初步研究[J]. 热带海洋学报, 32(6):73-79. |
WANG SHENGFU, SONG XINGYU, HUANG LIANGMIN, et al, 2013. Preliminary study on marine bacterial growth efficiency in the northern South China Sea in summer[J]. Journal of Tropical Oceanography, 32(6):73-79 (in Chinese with English abstract). | |
[8] | 张霞, 黄小平, 施震, 等, 2012. 珠江口异养细菌丰度与环境因子的耦合关系[J]. 海洋学报, 34(6):228-237. |
ZHANG XIA, HUANG XIAOPING, SHI ZHEN, et al, 2012. Coupling of heterotrophic bacteria abundance and environmental variables of the Zhujiang (Pearl) River Estuary[J]. Acta Oceanologica Sinica, 34(6):228-237 (in Chinese with English abstract). | |
[9] | BAILEY S, WANG MENGHUA, 2001. Satellite aerosol optical thickness match-up procedures[M]// FARGION G S, BARNES R, MCCLAIN C. In situ aerosol optical thickness collected by the SIMBIOS program (1997—2000): protocols, and data QC and analysis. NASA/TM-2001-209982. Greenbelt: Goddard Space Flight Center: 70-72. |
[10] |
BAILEY S W, WERDELL P J, 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products[J]. Remote Sensing of Environment, 102(1-2):12-23.
doi: 10.1016/j.rse.2006.01.015 |
[11] |
CAO ZHIGANG, DUAN HONGTAO, FENG LIAN, et al, 2017. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales[J]. Remote Sensing of Environment, 192:98-113.
doi: 10.1016/j.rse.2017.02.007 |
[12] |
CHEN BINGZHANG, LIU HONGBIN, WANG ZONGLING, 2009. Trophic interactions within the microbial food web in the South China Sea revealed by size-fractionation method[J]. Journal of Experimental Marine Biology and Ecology, 368:59-66.
doi: 10.1016/j.jembe.2008.10.012 |
[13] |
CHEN JUN, WANG BAOJUN, SUN JIHONG, 2012. Scale correction of two-band ratio of red to near-infrared using imagery histogram approach: a case study on indian remote sensing satellite in yellow river estuary[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2):663-668.
doi: 10.1109/JSTARS.4609443 |
[14] |
CRUMP B C, FINE L M, FORTUNATO C S, et al, 2017. Quantity and quality of particulate organic matter controls bacterial production in the Columbia River estuary[J]. Limnology and Oceanography, 62(6):2713-2731.
doi: 10.1002/lno.v62.6 |
[15] |
DUARTE C M, AGUSTI S, VAQUÉ D, et al, 2005. Experimental test of bacteria-phytoplankton coupling in the Southern Ocean[J]. Limnology and Oceanography, 50(6):1844-1854.
doi: 10.4319/lo.2005.50.6.1844 |
[16] |
HE QUANJUN, CHEN CHUQUN, 2014. A new approach for atmospheric correction of MODIS imagery in turbid coastal waters: a case study for the Pearl River Estuary[J]. Remote Sensing Letters, 5(3):249-257.
doi: 10.1080/2150704X.2014.898192 |
[17] | HE XIANQIANG, PAN DELU, MAO ZHIHUA, 2004. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Acta Oceanologica Sinica, 23(4):609-615. |
[18] |
HU SHUIBO, CAO WENXI, WANG GUIFEN, et al, 2015. Empirical ocean color algorithm for estimating particulate organic carbon in the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 33(3):764-778.
doi: 10.1007/s00343-015-4203-x |
[19] | LI W K W, HEAD E J H, GLEN HARRISON W, 2004. Macroecological limits of heterotrophic bacterial abundance in the ocean[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 51(11):1529-1540. |
[20] |
LIU DONG, PAN DELU, BAI YAN, et al, 2015. Remote sensing observation of particulate organic carbon in the pearl river estuary[J]. Remote Sensing, 7(7):8683-8704.
doi: 10.3390/rs70708683 |
[21] |
MOBLEY C D, STRAMSKI D, 1997. Effects of microbial particles on oceanic optics: Methodology for radiative transfer modeling and example simulations[J]. Limnology and Oceanography, 42(3):550-560.
doi: 10.4319/lo.1997.42.3.0550 |
[22] | MONTES-HUGO M A, REYNOLDS R A, VERNET M, et al, 2007. Particulate beam attenuation coefficient, bacteria abundance, and production in marine nearshore waters[C] // Proceedings of SPIE 6680, coastal ocean remote sensing. San Diego: SPIE. |
[23] |
PAN XIAOJU, WONG G T F, HO T-Y, et al, 2018. Remote sensing of surface [nitrite + nitrate] in river-influenced shelf-seas: the northern South China Sea shelf-sea[J]. Remote Sensing of Environment, 210:1-11.
doi: 10.1016/j.rse.2018.03.012 |
[24] |
PRIYAJA P, DWIVEDI R, SINI S, et al, 2016. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea[J]. Environmental Monitoring and Assessment, 188(12):662.
doi: 10.1007/s10661-016-5666-8 |
[25] |
RUDDICK K G, OVIDIO F, RIJKEBOER M, 2000. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 39(6):897-912.
doi: 10.1364/AO.39.000897 |
[26] |
STRAMSKI D, REYNOLDS R A, KAHRU M, et al, 1999. Estimation of particulate organic carbon in the ocean from satellite remote sensing[J]. Science, 285(5425):239-242.
doi: 10.1126/science.285.5425.239 |
[27] |
STRAMSKI D, BRICAUD A, MOREL A, 2001. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community[J]. Applied Optics, 40(18):2929-2945.
doi: 10.1364/AO.40.002929 |
[28] |
WANG MENGHUA, SHI WEI. 2007. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing[J]. Optics Express, 15(24):15722-15733.
doi: 10.1364/OE.15.015722 |
[29] | WONG G T F, KU T-L, LIU HONGBIN, et al, 2015. The oceanography of the Northern south China Sea Shelf-Sea (NoSoCS) and its adjacent Waters-overview and Highlights[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 117:3-9. |
[30] |
YE HAIBIN, CHEN CHUQUN, YANG CHAOYU, 2017. Atmospheric correction of landsat-8/OLI imagery in turbid estuarine waters: a case study for the pearl river estuary[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(1):252-261.
doi: 10.1109/JSTARS.4609443 |
[31] |
YUAN XIANGCHENG, HE LEI, YIN KEDONG, et al, 2011. Bacterial distribution and nutrient limitation in relation to different water masses in the coastal and northwestern South China Sea in late summer[J]. Continental Shelf Research, 31(11):1214-1223.
doi: 10.1016/j.csr.2011.04.012 |
[32] |
ZHANG XIA, SHI ZHEN, LIU QINGXIA, et al, 2013. Spatial and temporal variations of picoplankton in three contrasting periods in the Pearl River Estuary, South China[J]. Continental Shelf Research, 56:1-12.
doi: 10.1016/j.csr.2013.01.015 |
[33] |
ZHOU WEIHUA, LONG AIMIN, JIANG TAO, et al, 2011. Bacterioplankton dynamics along the gradient from highly eutrophic Pearl River Estuary to oligotrophic northern South China Sea in wet season: implication for anthropogenic inputs[J]. Marine Pollution Bulletin, 62(4):726-733.
doi: 10.1016/j.marpolbul.2011.01.018 |
[34] |
ZUBKOV M V, FUCHS B M, TARRAN G A, et al, 2002. Mesoscale distribution of dominant bacterioplankton groups in the northern North Sea in early summer[J]. Aquatic Microbial Ecology, 29(2):135-144.
doi: 10.3354/ame029135 |
[1] | LIU Yuan, KE Zhixin, LI Kaizhi, TAN Yehui, LIANG Junce, ZHOU Weihua. Zooplankton community in the coastal waters of eastern Guangdong under the influence of human activities and ocean currents [J]. Journal of Tropical Oceanography, 2024, 43(4): 98-111. |
[2] | JIANG Lyumiao, CHEN Tianran, ZHAO Kuan, ZHANG Ting, XU Lijia. Experimental study on bioerosion of marginal reefs in the Weizhou Island, northern South China Sea [J]. Journal of Tropical Oceanography, 2024, 43(3): 155-165. |
[3] | XU Lijia, LIAO Zhiheng, CHEN Hui, WANG Yongzhi, HUANG Baiqiang, LIN Qiaoyun, GAN Jianfeng, YANG Jing. Community structure of scleractinian corals in the northern South China Sea and their responses to the marine heatwaves [J]. Journal of Tropical Oceanography, 2024, 43(3): 58-71. |
[4] | ZHAO Minghui, YUAN Ye, ZHANG Jiazheng, ZHANG Cuimei, GAO Jinwei, WANG Qiang, SUN Zhen, CHENG Jinhui. New developments on the rift-breakup of the continent-ocean transition zone in the northern margin of the South China Sea [J]. Journal of Tropical Oceanography, 2024, 43(2): 173-183. |
[5] | YANG Yikai, ZENG Lili. Spatiotemporal characteristics of mesoscale eddies with transport capability of saline Kuroshio water in the northern South China Sea [J]. Journal of Tropical Oceanography, 2023, 42(3): 75-85. |
[6] | ZENG Yigang, JING Zhiyou, HUANG Xiaolong, ZHENG Ruixi. Analysis of the dynamic characteristics of the east Guangdong shelf front in the northern South China Sea in summer [J]. Journal of Tropical Oceanography, 2022, 41(4): 136-145. |
[7] | MA Mengzhen, LI Qian, WU Zhengchao, CHEN Yinchao, YU Jiancheng. Underwater glider observation of oxygen minimum zone in the northern South China Sea [J]. Journal of Tropical Oceanography, 2022, 41(1): 131-142. |
[8] | LI Huawei, XU Xiangrong. Pollution characteristics of polybrominated diphenyl ethers and alternative brominated flame retardants in sediments from typical mangrove wetlands of China [J]. Journal of Tropical Oceanography, 2022, 41(1): 117-130. |
[9] | WANG Renzheng, SHAN Zhengduo, MENG Siyu, GONG Xiang. Interannual variation of subsurface chlorophyll maximum in the northern South China Sea [J]. Journal of Tropical Oceanography, 2021, 40(6): 63-75. |
[10] | LI Bing, WANG Ruixuan, ZHANG Li, LUO Bang, MOU Hongli, WANG Jiangyong. The number and antibiotic resistance of heterotrophic bacteria in Crassostrea hongkongensis in aquaculture areas of Beibu Gulf [J]. Journal of Tropical Oceanography, 2021, 40(4): 70-83. |
[11] | Yuzheng REN, Zhixin KE, Yehui TAN, Kaizhi LI. Community structure of zooplankton and its influencing factors in the eastern waters of Nan’ao Island, Guangdong [J]. Journal of Tropical Oceanography, 2020, 39(2): 65-76. |
[12] | Chan SHU, Bingxu GENG, Weiwei FANG, Peng XIU. Parameter analysis and optimization using genetic algorithm in a marine ecosystem model of the northern South China Sea [J]. Journal of Tropical Oceanography, 2020, 39(2): 98-106. |
[13] | YANG Wei, DONG Yuan, ZU Tingting, LIU Changjian, XIU Peng. Distribution of Chlorophyll-a and its influencing factors in the northern South China Sea in summer [J]. Journal of Tropical Oceanography, 2019, 38(6): 9-20. |
[14] | ZHAO Kuan, ZHANG Ting, CHEN Tianran. Micro-bioerosion in Porites corals in the northern South China Sea [J]. Journal of Tropical Oceanography, 2019, 38(6): 74-79. |
[15] | Xia WANG,Wendong FANG,Rongyu CHEN. Intra-seasonal variability of sea level anomalies and their propagation features in the northern South China Sea from 25 years of satellite altimetry data [J]. Journal of Tropical Oceanography, 2019, 38(3): 1-12. |
|