| [1] |
丁巍伟, 朱日祥, 万博, 等, 2023. 新特提斯洋东南段动力过程及东南亚环形俯冲体系形成机制[J]. 中国科学: 地球科学, 53(4): 687-701.
|
|
DING WEIWEI, ZHU RIXIANG, WAN BO, et al, 2023. Geodynamic processes of the southeastern Neo-Tethys Ocean and the formation mechanism of the curved subduction system in Southeast Asia[J]. Science China Earth Sciences, 66(4): 703-717.
doi: 10.1007/s11430-022-1071-4
|
| [2] |
李付成, 孙珍, 张江阳, 2016. 海山俯冲过程中的变形特征——物理模拟和数值模拟证据[J]. 热带海洋学报, 35(1): 31-37.
doi: 10.11978/2015002
|
|
LI FUCHENG, SUN ZHEN, ZHANG JIANGYANG, 2016. Deformation of seamount during subduction: Insights from sandbox experiment and numerical simulation[J]. Journal of Tropical Oceanography, 35(1): 31-37 (in Chinese with English abstract).
doi: 10.11978/2015002
|
| [3] |
李付成, 孙珍, 张云帆, 等, 2012. 海山的倾斜俯冲对上覆板块变形的影响[J]. 地球物理学进展, 27(4): 1406-1415.
|
|
LI FUCHENG, SUN ZHEN, ZHANG YUNFAN, et al, 2012. Influence of oblique seamount subduction on the deformation of upper plate[J]. Progress in Geophysics, 27(4): 1406-1415 (in Chinese with English abstract).
|
| [4] |
冉伟民, 鲁银涛, 魏新元, 等, 2022. 东印度洋Roo海隆区域属性及其俯冲区域响应特征[J]. 地球物理学报, 65(8): 3025-3039.
|
|
RAN WEIMIN, LU YINTAO, WEI XINYUAN, et al, 2022. The nature and the response characteristics of the Roo Rise to subduction zone in the eastern Indian Ocean[J]. Chinese Journal of Geophysics, 65(8): 3025-3039 (in Chinese with English abstract).
|
| [5] |
ABERCROMBIE R E, ANTOLIK M, FELZER K, et al, 2001. The 1994 Java tsunami earthquake: Slip over a subducting seamount[J]. Journal of Geophysical Research: Solid Earth, 106(B4): 6595-6607.
|
| [33] |
SANDWELL D T, MÜLLER R D, SMITH W H F, et al, 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 346(6205): 65-67.
doi: 10.1126/science.1258213
|
| [34] |
SATAKE K, TANIOKA Y, 1999. Sources of tsunami and tsunamigenic earthquakes in subduction zones[J]. Pure and Applied Geophysics, 154: 467-483.
doi: 10.1007/s000240050240
|
| [35] |
SHULGIN A, KOPP H, MUELLER C, et al, 2011. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards[J]. Geophysical Journal International, 184(1): 12-28.
doi: 10.1111/gji.2010.184.issue-1
|
| [36] |
SPENCE W, 1986. The 1977 Sumba earthquake series: Evidence for Slab pull force acting at a subduction zone[J]. Journal of Geophysical Research: Solid Earth, 91(B7): 7225-7239.
|
| [37] |
VAN DER WERFF W, 1996. Variation in forearc basin development along the Sunda Arc, Indonesia[J]. Journal of Southeast Asian Earth Sciences, 14: 331-349.
doi: 10.1016/S0743-9547(96)00068-2
|
| [38] |
VAN HUNEN J, VAN DEN BERG A P, VLAAR N J, 2002. On the role of subducting oceanic plateaus in the development of shallow flat subduction[J]. Tectonophysics, 352(3-4): 317-333.
doi: 10.1016/S0040-1951(02)00263-9
|
| [39] |
WESSEL P, SMITH W H F, 1991. Free software helps map and display data[J]. Eos, Transactions American Geophysical Union, 72(41): 441-446.
|
| [40] |
XIA YUEYANG, KOPP H, KLAESCHEN D, et al, 2023. Seamount and ridge subduction at the Java margin, Indonesia: effects on structural geology and seismogenesis[J]. Journal of Geophysical Research: Solid Earth, 128(9): e2022JB026272.
|
| [41] |
XIA YUEYANG, GEERSEN J, KLAESCHEN D, et al, 2021. Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake[J]. Solid Earth, 12(11): 2467-2477.
doi: 10.5194/se-12-2467-2021
|
| [6] |
BILEK S L, ENGDAHL E R, 2007. Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone[J]. Geophysical Research Letters, 34(20): L20311.
|
| [7] |
DEMETS C, GORDON R G, ARGUS D F, 2010. Geologically current plate motions[J]. Geophysical Journal International, 181(1): 1-80.
doi: 10.1111/gji.2010.181.issue-1
|
| [8] |
DICKINSON W R, 1977. Tectono-stratigraphic evolution of subduction-controlled sedimentary assemblages[M]//TALWANI M, PITMANN Ⅲ W C, Eds, Island Arcs, Deep Sea Trenches and Back-Arc Basins. Maurice Ewing Series 1. Washington, D. C.: American Geophysical Union:land Arcs, Deep Sea Trenches and Back-Arc Basins. Maurice Ewing Series 1. Washington, D. C.: American Geophysical Union: 33-40.
|
| [9] |
FONT Y, LALLEMAND S, 2009. Subducting oceanic high causes compressional faulting in southernmost Ryukyu forearc as revealed by hypocentral determinations of earthquakes and reflection/refraction seismic data[J]. Tectonophysics, 466(3-4): 255-267.
doi: 10.1016/j.tecto.2007.11.018
|
| [10] |
HALL R, 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 20(4): 353-431.
doi: 10.1016/S1367-9120(01)00069-4
|
| [11] |
HALL R, SMYTH H R, 2008. Cenozoic arc processes in Indonesia: identification of the key influences on the stratigraphic record in active volcanic arcs[M]//DRAUT A E, CLIFT P D, SCHOLL D W. Formation and applications of the sedimentary record in Arc Collision Zones. Boulder: Geological Society of America.
|
| [12] |
HAMILTON W B, 1979. Tectonics of the Indonesian Region[R]. Washington, D. C. : U. S. Government Publishing Office: 1078.
|
| [13] |
HAMILTON W B, 1988. Plate tectonics and island arcs[J]. GAS Bulletin, 100(10): 1503-1527.
|
| [14] |
HEINE C, MÜLLER R D, GAINA C, 2004. Reconstructing the lost eastern Tethys Ocean Basin: Convergence history of the SE Asian margin and marine gateways[M]//CLIFT P, KUHNT W, WANG P, et al. Continent-ocean interactions within East Asian marginal seas. Washington, D. C. : American Geophysical Union: 37-54.
|
| [15] |
HOERNLE K, HAUFF F, WERNER R, et al, 2011. Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere[J]. Nature Geoscience, 4(12): 883-887.
doi: 10.1038/ngeo1331
|
| [16] |
KODAIRA S, TAKAHASHI N, NAKANISHI A, et al, 2000. Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake[J]. Science, 289(5476): 104-106.
pmid: 10884221
|
| [17] |
KOPP H, 2011. The Java convergent margin: structure, seismogenesis and subduction processes[M]//HALL R, COTTAM M A; WILSON M E J. The SE Asian Gateway: history and tectonics of the Australia-Asia collision. London: Geological Society.
|
| [18] |
KOPP H, 2013. Invited review paper: The control of subduction zone structural complexity and geometry on margin segmentation and seismicity[J]. Tectonophysics, 589: 1-16.
doi: 10.1016/j.tecto.2012.12.037
|
| [19] |
KOPP H, FLUEH E R, KLAESCHEN D, et al, 2001. Crustal structure of the central Sunda margin at the onset of oblique subduction[J]. Geophysical Journal International, 147(2): 449-474.
doi: 10.1046/j.0956-540x.2001.01547.x
|
| [20] |
KOPP H, FLUEH E R, PETERSEN C J, et al, 2006. The Java margin revisited: Evidence for subduction erosion off Java[J]. Earth and Planetary Science Letters, 242(1-2): 130-142.
doi: 10.1016/j.epsl.2005.11.036
|
| [21] |
KOPP H, HINDLE D, KLAESCHEN D, et al, 2009. Anatomy of the western Java plate interface from depth-migrated seismic images[J]. Earth and Planetary Science Letters, 288(3-4): 399-407.
doi: 10.1016/j.epsl.2009.09.043
|
| [22] |
KOPP H, KUKOWSKI N, 2003. Backstop geometry and accretionary mechanics of the Sunda margin[J]. Tectonics, 22(6): 1072.
|
| [23] |
LÜSCHEN E, MÜLLER C, KOPP H, et al, 2011. Structure, evolution and tectonic activity of the eastern Sunda forearc, Indonesia, from marine seismic investigations[J]. Tectonophysics, 508(1-4): 6-21.
doi: 10.1016/j.tecto.2010.06.008
|
| [24] |
MALOD J A, KARTA K, BESLIER M O, et al, 1995. From normal to oblique subduction: Tectonic relationships between Java and Sumatra[J]. Journal of Southeast Asian Earth Sciences, 12(1-2): 85-93.
doi: 10.1016/0743-9547(95)00023-2
|
| [25] |
MARTÍNEZ-LORIENTE S, SALLARÈS V, RANERO C S, et al, 2019. Influence of incoming plate relief on overriding plate deformation and earthquake nucleation: Cocos ridge subduction (Costa Rica)[J]. Tectonics, 38(12): 4360-4377.
doi: 10.1029/2019TC005586
|
| [26] |
MASSON D G, PARSON L M, MILSOM J, et al, 1990. Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar[J]. Tectonophysics, 185(1-2): 51-65.
doi: 10.1016/0040-1951(90)90404-V
|
| [27] |
MCNEILL L C, HENSTOCK T J, 2014. Forearc structure and morphology along the Sumatra-Andaman subduction zone[J]. Tectonics, 33(2): 112-134.
doi: 10.1002/tect.v33.2
|
| [28] |
MOCHIZUKI K, YAMADA T, SHINOHARA M, et al, 2008. Weak interplate coupling by seamounts and repeating M - 7 earthquakes[J]. Science, 321(5893): 1194-1197.
doi: 10.1126/science.1160250
|
| [29] |
MOORE G F, CURRAY J R, MOORE D G, et al, 1980. Variations in geologic structure along the Sunda fore Arc, Northeastern Indian Ocean[M]//HAYES D E. The tectonic and geologic evolution of Southeast Asian seas and islands. Washington, D. C. : American Geophysical Union, 23: 145-160.
|
| [30] |
MÜLLER C, BARCKHAUSEN U, EHRHARDT A, et al, 2008. From subduction to collision: the Sunda-Banda Arc transition[J]. Eos, Transactions American Geophysical Union, 89(6): 49-50.
doi: 10.1029/2008EO060001
|
| [31] |
PLANERT L, KOPP H, LUESCHEN E, et al, 2010. Lower plate structure and upper plate deformational segmentation at the Sunda-Banda Arc transition, Indonesia[J]. Journal of Geophysical Research: Solid Earth, 115(B8): B08107.
|
| [32] |
RUH J B, SALLARÈS V, RANERO C R, et al, 2016. Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling[J]. Journal of Geophysical Research: Solid Earth, 121(9): 6880-6902.
doi: 10.1002/jgrb.v121.9
|