Journal of Tropical Oceanography ›› 2020, Vol. 39 ›› Issue (1): 94-105.doi: 10.11978/2019048CSTR: 32234.14.2019048
• Marine Geology • Previous Articles Next Articles
LIU Jinlong1,2,3,4, WANG Shuhong1,2,3, Asiri Obeysekara5, XIANG Jiansheng5,6, Pablo Salinas5, Christopher Pain5, Jonny Rutqvist7, YAN Wen1,2,3,4()
Received:
2019-05-13
Revised:
2019-05-18
Online:
2020-01-20
Published:
2020-01-09
Contact:
Wen YAN
E-mail:wyan@scsio.ac.cn
Supported by:
CLC Number:
LIU Jinlong, WANG Shuhong, Asiri Obeysekara, XIANG Jiansheng, Pablo Salinas, Christopher Pain, Jonny Rutqvist, YAN Wen. Codes coupling method for simulating hydraulic fracturing within the gas hydrate stability zone[J].Journal of Tropical Oceanography, 2020, 39(1): 94-105.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Physical model parameters"
参数名称 | 数值 | 参考文献 |
---|---|---|
沉积物颗粒的密度/($\text{kg}\cdot {{\text{m}}^{-\text{3}}}$) | 2650 | Garg et al, 2008 |
甲烷在孔隙水中的扩散系数/(${{\text{m}}^{\text{2}}}\cdot {{\text{s}}^{-\text{1}}}$) | $\text{1}{{\text{0}}^{-\text{9}}}$ | Garg et al, 2008 |
盐离子在孔隙水中的扩散系数/(${{\text{m}}^{\text{2}}}\cdot {{\text{s}}^{-\text{1}}}$) | $\text{1}{{\text{0}}^{-\text{9}}}$ | Garg et al, 2008 |
沉积物颗粒的半径/m | $\text{1}\text{.48}\times \text{1}{{\text{0}}^{-\text{6}}}$ | Gràcia et al, 2005 |
沉积物压缩系数/$\text{P}{{\text{a}}^{-1}}$ | ${{10}^{-8}}$ | Rutqvist et al, 2009 |
热膨胀系数/${{\text{K}}^{-1}}$ | 0.0 |
Tab. 2
Model equations and parameterizations for thermal conductivity, capillary pressure and relative permeability"
方程或参数名称 | 表达式或数值 | 参考文献 |
---|---|---|
沉积物热导率模型 | $\begin{align} & {{K}_{\Theta }}=\left( 1-{{\phi }_{0}} \right){{K}_{\text{dry}}}+ \\ & {{\phi }_{0}}\left( {{S}_{\text{a}}}{{K}_{\text{a}}}+{{S}_{\text{h}}}{{K}_{\text{h}}}+{{S}_{\text{g}}}{{K}_{\text{g}}} \right) \\ \end{align}$ | |
沉积物颗粒的热导率${{K}_{\text{dry}}}$/($\text{W}\cdot {{\text{m}}^{-\text{1}}}\cdot {{\text{K}}^{-\text{1}}}$) | 3.61 | |
因水合物存在而引起的渗透率降低模型 | ${{k}_{\text{rS}}}={{\left[ \frac{{{\phi }_{0}}\left( 1-{{S}_{\text{h}}} \right)-{{\phi }_{\text{c}}}}{{{\phi }_{0}}-{{\phi }_{\text{c}}}} \right]}^{{{n}_{\text{H}}}}}$ | |
基质沉积物中的临界孔隙度${{\phi }_{\text{c}}}$ | 0.01 | |
裂隙中的临界孔隙度${{\phi }_{\text{c}}}$ | 0.0 | |
基质沉积物中的渗透率降低指数${{n}_{\text{H}}}$ | 11.1 | |
裂隙中的渗透率降低指数${{n}_{\text{H}}}$ | 3.0 | |
存在水合物时的毛细管压力模型 | ${{P}_{\text{cap}}}=\sqrt{\frac{1-{{S}_{\text{h}}}}{{{k}_{\text{rS}}}}}{{P}_{\text{cap,00}}}$ | |
不存在水合物时的毛细管压力模型 (Van Genuchten模型) | ${{P}_{\text{cap,00}}}=-{{P}_{0}}{{\left[ {{\left( {{S}^{*}} \right)}^{-{1}/{\lambda }\;}}-1 \right]}^{1-\lambda }}$ ${{S}^{*}}={\left( {{S}_{\text{a}}}-{{S}_{\text{irA}}} \right)}/{\left( {{S}_{\text{mxA}}}-{{S}_{\text{irA}}} \right)}\;$ | |
Van Genuchten指数$\lambda$ | 0.45 | |
基质沉积物中的毛细管入口压力${{P}_{0}}$/Pa | $2.3\times {{10}^{5}}$ | |
裂隙中的${{P}_{0}}$/Pa | 144 | |
基质沉积物中的残余孔隙水饱和度${{S}_{\text{irA}}}$ | 0.19 | |
裂隙中的${{S}_{\text{irA}}}$ | 0.09 | |
最大孔隙水饱和度${{S}_{\text{mxA}}}$ | 1.0 | |
基质沉积物中的最大毛细管压力${{P}_{\text{cap,mx}}}$/Pa | $6.5\times {{10}^{7}}$ | |
裂隙中的${{P}_{\text{cap,mx}}}$/Pa | $5.0\times {{10}^{7}}$ | |
相对渗透率模型 (Modified Stone’s模型) | ${{k}_{\text{rA}}}={{\left[ {\left( {{S}_{\text{a}}}-{{S}_{\text{irA}}} \right)}/{\left( 1-{{S}_{\text{irA}}} \right)}\; \right]}^{n}}$ ${{k}_{\text{rG}}}={{\left[ {\left( {{S}_{\text{g}}}-{{S}_{\text{irG}}} \right)}/{\left( 1-{{S}_{\text{irA}}} \right)}\; \right]}^{n}}$ | |
基质沉积物中的残余孔隙水饱和度${{S}_{\text{irA}}}$ | 0.20 | |
裂隙中的${{S}_{\text{irA}}}$ | 0.10 | |
基质沉积物中的残余气体饱和度${{S}_{\text{irG}}}$ | 0.02 | |
裂隙中的${{S}_{\text{irG}}}$ | 0.01 | |
相对渗透率指数n | 3.57 |
Tab. 3
Sediment properties or parameters used in Solidity codes"
参数 | 数值 |
---|---|
黏聚力/MPa | 1.06 |
内摩擦系数 | 0.76 |
联接摩擦系数 | 0.76 |
拉伸强度/MPa | 1.0 |
模型I的能量释放率/($\text{J}\cdot {{\text{m}}^{-\text{2}}}$) | 1.0 |
模型II的能量释放率/($\text{J}\cdot {{\text{m}}^{-\text{2}}}$) | 10.0 |
质量系数 | 300 |
第一拉梅常数λ | $2.31\times {{10}^{9}}$ |
第二拉梅常数μ | $1.538\times {{10}^{9}}$ |
弹性惩罚因子 | $4.0\times {{10}^{9}}$ |
接触惩罚因子 | $4.0\times {{10}^{8}}$ |
界面摩擦系数 | 0.76 |
最大拉伸强度/MPa | 1000 |
实验尺度的联接粗糙度系数 | 15 |
实验尺度的联接压缩强度/MPa | 120 |
联接样本长度/m | 0.2 |
[1] | 卢静生, 李栋梁, 何勇 , 等, 2017. 天然气水合物开采过程中出砂研究现状[J]. 新能源进展, 5(5):394-402. |
LU JINGSHENG, LI DONGLIANG, HE YONG , et al, 2017. Research status of sand production during the gas hydrate exploitation process[J]. Advances in New and Renewable Energy, 5(5):394-402 (in Chinese with English abstract). | |
[2] |
ASADOLLAHI P, INVERNIZZI M C A, ADDOTTO S , et al, 2010. Experimental validation of modified Barton’s model for rock fractures[J]. Rock Mechanics and Rock Engineering, 43(5):597-613.
doi: 10.1007/s00603-010-0085-6 |
[3] | DAIGLE H, BANGS N L, DUGAN B , 2011. Transient hydraulic fracturing and gas release in methane hydrate settings: A case study from southern Hydrate Ridge[J]. Geochemistry, Geophysics, Geosystems, 12(12):1-15. |
[4] | DAVIE M K, BUFFETT B A , 2001. A numerical model for the formation of gas hydrate below the seafloor[J]. Journal of Geophysical Research: Solid Earth, 106(B1):497-514. |
[5] | DAVIE M K, BUFFETT B A , 2003. A steady state model for marine hydrate formation: constraints on methane supply from pore water sulfate profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B10):2495. |
[6] |
DUGDALE D S , 1960. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 8(2):100-104.
doi: 10.1016/0022-5096(60)90013-2 |
[7] |
FARRELL P E, MADDISON J R , 2011. Conservative interpolation between volume meshes by local Galerkin projection[J]. Computer Methods in Applied Mechanics and Engineering, 200(1-4):89-100.
doi: 10.1016/j.cma.2010.07.015 |
[8] |
FARRELL P E, PIGGOTT M D, PAIN C C , et al, 2009. Conservative interpolation between unstructured meshes via supermesh construction[J]. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2632-2642.
doi: 10.1016/j.cma.2009.03.004 |
[9] |
FENG YONGCHANG, CHEN LIN, SUZUKI A , et al, 2019. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion and Management, 184:194-204.
doi: 10.1016/j.enconman.2019.01.050 |
[10] | GARG S K, PRITCHETT J W, KATOH A , et al, 2008. A mathematical model for the formation and dissociation of methane hydrates in the marine environment[J]. Journal of Geophysical Research: Solid Earth, 113(B1):B01201. |
[11] | GRÀCIA E, MARTÍNEZ-RUIZ F, PIÑERO E , et al, 2005. Data report: Grain-size and bulk and clay mineralogy of sediments from the summit and flanks of southern Hydrate Ridge, Sites 1244-1250, ODP Leg 204[M] //TRÉHU A M, BOHRMANN G, TORRES M E, et al. Proceedings of the ocean drilling program, scientific results volume 204. College Station, TX: Ocean Drilling Program: 1-19. |
[12] |
GUO LIWEI, LATHAM J P, XIANG JIANSHENG , 2015. Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite-discrete element method[J]. Computers & Structures, 146:117-142.
doi: 10.1371/journal.pone.0226611 pmid: 31910214 |
[13] |
GUPTA S, DEUSNER C, HAECKEL M , et al, 2017. Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments[J]. Geochemistry, Geophysics, Geosystems, 18(9):3419-3437.
doi: 10.1002/ggge.v18.9 |
[14] |
GUPTA S, HELMIG R, WOHLMUTH B , 2015. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 19(5):1063-1088.
doi: 10.1007/s10596-015-9520-9 |
[15] |
GUPTA S, WOHLMUTH B, HELMIG R , 2016. Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs[J]. Advances in Water Resources, 91:78-87.
doi: 10.1016/j.advwatres.2016.02.013 |
[16] | HAUKWA C B , 1998. AMESH—a mesh creating program for the integral finite difference method: a user's manual[R]. Report LBNL-45284. Berkeley, California: Lawrence Berkeley National Laboratory: 1-52. |
[17] | ITO T, IGARASHI A, SUZUKI K, et al, 2008. Laboratory study of hydraulic fracturing behavior in unconsolidated sands for methane hydrate production [C]//Offshore technology conference. Houston, Texas, USA: Offshore Technology Conference: 1-8. |
[18] | KIM J, YANG D, MORIDIS G J, et al, 2012. Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits [C]//SPE reservoir simulation symposium. The Woodlands, Texas, USA: Society of Petroleum Engineers: 485-501. |
[19] |
KIMOTO S, OKA F, FUSHITA T , 2010. A chemo-thermo- mechanically coupled analysis of ground deformation induced by gas hydrate dissociation[J]. International Journal of Mechanical Sciences, 52(2):365-376.
doi: 10.1016/j.ijmecsci.2009.10.008 |
[20] |
KLAR A, SOGA K, NG M Y A , 2010. Coupled deformation-flow analysis for methane hydrate extraction[J]. Géotechnique, 60(10):765-776.
doi: 10.1680/geot.9.P.079-3799 |
[21] |
KONNO Y, JIN Y, YONEDA J , et al, 2016. Hydraulic fracturing in methane-hydrate-bearing sand[J]. RSC Advances, 6(77):73148-73155.
doi: 10.1039/C6RA15520K |
[22] |
KOSSEL E, DEUSNER C, BIGALKE N , et al, 2018. The dependence of water permeability in quartz sand on gas hydrate saturation in the pore space[J]. Journal of Geophysical Research: Solid Earth, 123(2):1235-1251.
doi: 10.1002/jgrb.v123.2 |
[23] |
LATHAM J-P, XIANG JIANSHENG, BELAYNEH M , et al, 2013. Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 57:100-112.
doi: 10.1016/j.ijrmms.2012.08.002 |
[24] |
LEI QINGHUA, LATHAM J-P, XIANG JIANSHENG , et al, 2014. Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences, 70:507-523.
doi: 10.1016/j.ijrmms.2014.06.001 |
[25] |
LEI QINGHUA, LATHAM J-P, TSANG C-F , et al, 2015a. A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics[J]. Journal of Geophysical Research: Solid Earth, 120(7):4784-4807.
doi: 10.1002/2014JB011736 |
[26] |
LEI QINGHUA, LATHAM J-P, XIANG JIANSHENG , et al, 2015b. Polyaxial stress-induced variable aperture model for persistent 3D fracture networks[J]. Geomechanics for Energy and the Environment, 1:34-47.
doi: 10.1016/j.gete.2015.03.003 |
[27] | LIU XIAOLI, FLEMINGS P B , 2007. Dynamic multiphase flow model of hydrate formation in marine sediments[J]. Journal of Geophysical Research: Solid Earth, 112(B3):B03101. |
[28] | LIU XIAOLI, FLEMINGS P B , 2011. Capillary effects on hydrate stability in marine sediments[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 116(B07102):1-24. |
[29] |
LIU ZHICHAO, DAI SHENG, NING FULONG , et al, 2018. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophysical Research Letters, 45(2):715-723.
doi: 10.1002/grl.v45.2 |
[30] |
MATSUDA H, YAMAKAWA T, SUGAI Y , et al, 2016. Gas production from offshore methane hydrate layer and seabed subsidence by depressurization method[J]. Engineering, 8(6):353-364.
doi: 10.4236/eng.2016.86033 |
[31] | MORIDIS G J, KOWALSKY M B, PRUESS K , 2008. TOUGH+HYDRATE v1.0 user's manual: a code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley, California: Earth Sciences Division, Lawrence Berkeley National Laboratory: 1-279. |
[32] | MUNJIZA A , 2004. The combined finite-discrete element method[M]. Hoboken, NJ: John Wiley & Sons, Ltd:1-333. |
[33] |
MUNJIZA A, ANDREWS K R F, WHITE J K , 1999. Combined single and smeared crack model in combined finite-discrete element analysis[J]. International Journal for Numerical Methods in Engineering, 44(1):41-57.
doi: 10.1002/(ISSN)1097-0207 |
[34] | OBEYSEKARA A , 2018. Numerical modelling of hydraulic fracturing in naturally fractured rock[D]. London: Imperial College London: 1-235. |
[35] | OBEYSEKARA A, LEI QINGHUA, SALINAS P, et al, 2016. A fluid-solid coupled approach for numerical modeling of near-wellbore hydraulic fracturing and flow dynamics with adaptive mesh refinement [C]//Proceedings of the 50th U.S. rock mechanics/geomechanics symposium. Houston, Texas: American Rock Mechanics Association: 1-12. |
[36] | OBEYSEKARA A, LEI QINGHUA, SALINAS P, et al, 2017. Modelling the evolution of a fracture network under excavation-induced unloading and seepage effects based on a fully coupled fluid-solid simulation [C]//Proceedings of the 51st U.S. rock mechanics/geomechanics symposium. San Francisco, California, USA: American Rock Mechanics Association: 1-12. |
[37] | OLSSON R, BARTON N , 2001. An improved model for hydromechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 38(3):317-329. |
[38] | PARK K P, BAHK J J, KWON Y , et al, 2008. Korean national program expedition confirm rich gas hydrate deposits in the Ulleung Basin, East Sea[J]. Fire in the Ice: Methane Hydrate Newsletter, 2008: 6-9. |
[39] |
PRUESS K, TSANG Y W , 1990. On two-phase relative permeability and capillary pressure of rough-walled rock fractures[J]. Water Resources Research, 26(9):1915-1926.
doi: 10.1029/WR026i009p01915 |
[40] | REMPEL A W, BUFFETT B A , 1997. Formation and accumulation of gas hydrate in porous media[J]. Journal of Geophysical Research: Solid Earth, 102(B5):10151-10164. |
[41] |
REMPEL A W, BUFFETT B A , 1998. Mathematical models of gas hydrate accumulation[J]. Geological Society, London, Special Publications, 137(1):63-74.
doi: 10.1016/j.biortech.2012.04.031 pmid: 22609679 |
[42] |
RUTQVIST J, MORIDIS G J , 2009. Numerical studies on the geomechanical stability of hydrate-bearing sediments[J]. SPE Journal, 14(2):267-282.
doi: 10.2118/126129-PA |
[43] |
SMITH A J, FLEMINGS P B, LIU XIAOLI , et al, 2014. The evolution of methane vents that pierce the hydrate stability zone in the world's oceans[J]. Journal of Geophysical Research: Solid Earth, 119(8):6337-6356.
doi: 10.1002/jgrb.v119.8 |
[44] |
STONE H L , 1970. Probability model for estimating three-phase relative permeability[J]. Journal of Petroleum Technology, 22(2):214-218.
doi: 10.2118/2116-PA |
[45] |
STRANNE C, O'REGAN M, JAKOBSSON M , 2017. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation[J]. Geophysical Research Letters, 44(16):8510-8519.
doi: 10.1002/2017GL074349 |
[46] | TRÉHU A M, BOHRMANN G, RACK F R , et al, 2003. Proceedings of the ocean drilling program, initial reports, volume 204[R]. Station, Tex: Ocean Drilling Program. |
[47] |
VAN GENUCHTEN M T , 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(5):892-898.
doi: 10.1016/j.jconhyd.2006.05.001 pmid: 16797103 |
[48] |
VIRÉ A, XIANG JIANSHENG, MILTHALER F , et al, 2012. Modelling of fluid-solid interactions using an adaptive mesh fluid model coupled with a combined finite-discrete element model[J]. Ocean Dynamics, 62(10-12):1487-1501.
doi: 10.1007/s10236-012-0575-z |
[49] |
VIRÉ A, XIANG JIANSHENG, PAIN C C , 2015. An immersed- shell method for modelling fluid-structure interactions[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035):20140085.
doi: 10.1098/rsta.2014.0085 pmid: 25583857 |
[50] |
XIANG JIANSHENG, MUNJIZA A, LATHAM J-P , 2009. Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method[J]. International Journal for Numerical Methods in Engineering, 79(8):946-978.
doi: 10.1002/nme.v79:8 |
[51] | XU WENYUE, RUPPEL C , 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 104(B3):5081-5095. |
[52] |
YANG PAN, XIANG JIANSHENG, CHEN M , et al, 2017. The immersed-body gas-solid interaction model for blast analysis in fractured solid media[J]. International Journal of Rock Mechanics and Mining Sciences, 91:119-132.
doi: 10.1016/j.ijrmms.2016.10.006 |
[1] | SONG Ruiyou, YU Junfeng, CHAO Caixia, SONG Peng, PAN Guangchao. Fracture identification technique and its application in gas and hydrate exploration [J]. Journal of Tropical Oceanography, 2020, 39(1): 120-129. |
[2] | Yi HUANG, Shuhong WANG, Wen YAN, Jun CHENG. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha Area of northern South China Sea [J]. Journal of Tropical Oceanography, 2018, 37(4): 61-69. |
[3] | Guangjian ZHONG, Ruwei ZHANG, Hai YI, Changmao FENG, Zhongquan ZHAO. The characteristics of shallow gas reservoir developed in the northern continental slope of South China Sea [J]. Journal of Tropical Oceanography, 2018, 37(3): 80-85. |
[4] | Jiliang WANG, Shiguo WU, Yongjian YAO, Bo LI. Advances in geophysical research on gas hydrate reservoirs on the east continental margin of India [J]. Journal of Tropical Oceanography, 2017, 36(6): 90-99. |
[5] | Xiaozhu HAO, Qingxian ZHAO, Yanliang PEI. Large-energy plasma seismic source for gas hydrate exploration [J]. Journal of Tropical Oceanography, 2017, 36(1): 35-40. |
[6] | LIU Bin, GENG Jianhua. Velocity structure of bottom simulating reflector-bearing sediment layers in the eastern Pearl River Mouth Basin of the South China Sea: Results from reflection travel time inversion [J]. Journal of Tropical Oceanography, 2016, 35(6): 29-35. |
[7] | ZHANG Xian-zheng, XIAO Hong-yue. Feasibility study of deep geothermal exploitation of natural gas hydrate [J]. Journal of Tropical Oceanography, 2015, 34(2): 85-89. |
[8] | LIU Jin-long, WANG Shu-hong, YAN Wen. Research on coexistence between marine gas hydrate and deepwater oil [J]. Journal of Tropical Oceanography, 2015, 34(2): 39-51. |
[9] | XU Hong, CAI Ying, SUN He-qing, YAN Gui-jing, WEI Kai, ZHAO Xin-wei, ZHU Yu-rui, SHI Jian, DONG Gang, LI Qing. The survey status and geological conditions of accumulation of gas hydrate resource in the East China Sea [J]. Journal of Tropical Oceanography, 2013, 32(4): 22-29. |
[10] | LI Cheng-feng,HU Gao-wei,LIU Chang-ling,YE Yu-guang,ZHENG Rong-er. Application of X-ray computed tomography in natural gas hydrate research [J]. Journal of Tropical Oceanography, 2012, 31(5): 93-99. |
[11] | WANG Chun-juan,DU De-wen,LIU Yong-gang,ZHU Zhi-wei,YAN Shi-juan,YANG Gang. GIS assessment of potential gas hydrate mineral resources in the Gulf of Mexico based on Weights-of-Evidence modeling [J]. Journal of Tropical Oceanography, 2012, 31(5): 88-92. |
[12] | SU Zheng,HE Yong,WU Neng-you,. Numerical simulation on production potential of hydrate deposits by thermal stimulation [J]. Journal of Tropical Oceanography, 2012, 31(5): 74-82. |
[13] | HE Yong,SU Zheng,WU Neng-you,. Effect of nonhydrocarbon gas on thickness of hydrate stability zone under deep water in Qiongdongnan Basin [J]. Journal of Tropical Oceanography, 2012, 31(5): 62-69. |
[14] | ZHANG Hui,YAN Pin. Model comparison of the effect of gas hydrates and wetlands on the atmospheric methane concentration variation in late Quaternary [J]. Journal of Tropical Oceanography, 2012, 31(5): 57-61. |
[15] | CHEN Hong-jun,HUANG Lei,PENG Xue-chao,WU Jiao-qi,LI Wen-cheng,WANG Ying-min. Discussion of characteristics and formation of landslide zones in the gas hydrate survey area of northwest continental slope, the South China Sea [J]. Journal of Tropical Oceanography, 2012, 31(5): 18-25. |
|