Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (3): 1-15.doi: 10.11978/2021130CSTR: 32234.14.2021130
• Marine Geology • Next Articles
ZHANG Jinchang1,2,3(), YANG Xiaodong1,2,3(
), LIN Jingxue4, QU Meng5, LUO Yiming6
Received:
2021-09-26
Revised:
2021-12-10
Published:
2021-12-14
Contact:
YANG Xiaodong
E-mail:jzhang@scsio.ac.cn;xdyang@scsio.ac.cn
Supported by:
CLC Number:
ZHANG Jinchang, YANG Xiaodong, LIN Jingxue, QU Meng, LUO Yiming. Characteristics and formation mechanisms of faults on the Jurassic oceanic crust in the western Pacific Ocean*[J].Journal of Tropical Oceanography, 2022, 41(3): 1-15.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 1
Location of the study area. (a) The oceanic subduction of the western Pacific plate beneath the Philippines plate. Black arrow denotes relative plate motion vector. White circles mark the ocean drilling sites. Red-white balls represent focal mechanisms of earthquake with magnitude ≥5 (from https://www.globalcmt.org). (b) The locations of multichannel seismic profile from cruise TN272 on the Jurassic oceanic crust. Seafloor topography data are from GEBCO (https://www.gebco.net). Magnetic lineations drawn in black are from Stadler et al (2015), Tominaga et al (2015), and Tominaga et al (2021). The ages of oceanic crust with yellow lines are obtained from https://ngdc.noaa.gov/mgg/ocean_age/ocean_age_2008.html"
Tab. 1
Acquisition parameters of the multichannel seismic data"
参数名称 | 数值 |
---|---|
GI 空气枪数量 | 2支 |
空气枪容量 | 约1.8L |
空气枪拖曳水深 | 4m |
放炮间距 | 25m |
接收电缆长度 | 870m |
接收电缆道数 | 48道 |
道间距 | 12.5m |
电缆拖曳水深 | 4m |
采样间隔 | 1ms |
记录长度 | 11.5s |
主频范围 | 50~200Hz |
水平叠加次数 | 12次 |
共深度点炮集间距 | 6.25m |
水平分辨率 | 6.25m |
垂直分辨率 | 约2~5m |
总测线长度 | 794.434km |
测线方位角 | 205°~213° |
测线起点坐标 | 22°34′50″N, 166°38′38″E |
测线终点坐标 | 17°13′10″N, 161°36′19″E |
Fig. 2
The 2D multichannel seismic profile across the west Pacific Jurassic oceanic crust (a), crustal structure model (b), and seismic stratigraphy (c). Rectangles indicate the enlarged segments, showing active faults in Figs. 3-5. Labels A, B, C, and D mark the interpreted stratigraphic units in the text. Crustal structure model is a result jointly constrained with the refraction velocity model from Feng (2016) and multichannel seismic reflection data interpretation in the text. Location of seismic profile is shown in Fig. 1"
Fig. 3
The enlarged seismic section of basement faults (top), structural interpretation (middle), and fault displacement analysis (bottom). Labels A, B, C, and D mark the mapped stratigraphic units. Red lines are interpreted faults. F1, F2, and F3 denote active faults that cut through the basement and seafloor. Locations of seismic segments are shown in Fig. 2. Note that the fault displacement decreases upward along the fault plane"
Fig. 5
The enlarged seismic section of sedimentary faults (top), structural interpretation (middle), and fault displacement analysis (bottom). Labels A, B, C, and D mark the interpreted stratigraphic units. Red lines are faults. F4 and F5 denote active faults that cut through the basement and seafloor. Locations of seismic segments are shown in Fig. 2. Note that the fault displacement decreases upward along the large faults that cut through the basement"
Fig. 6
Spatial distribution of interpreted active faults on the seafloor bathymetry (a), residual bathymetry (b), free-air gravity anomaly (c), and magnetic anomaly (d). Red lines are interpreted active faults in the text. Black lines denote M-series magnetic lineations, and dashed orange lines represent fracture zones. Data are from Tominaga et al (2015). Red-white balls represent focal mechanisms of earthquake with magnitude ≥5 (from https://www.globalcmt.org). Location of seismic profile TN272 in white line is shown in Fig. 1"
[1] |
陈双双, 刘嘉麒, 2018. 中太平洋山脉白垩纪响岩质碱玄岩的地球化学特征及地质意义[J]. 中国科学 D辑: 地球科学, 48(5): 595-616.
doi: 10.1007/s11430-017-9172-4 |
CHEN SHUANGSHUANG, LIU JIAQI, 2018. Geochemical characteristics and geological significance of Cretaceous phonotephrite from the Mid-Pacific Mountains[J]. Science China Earth Sciences, 61(6): 745-764.
doi: 10.1007/s11430-017-9172-4 |
|
[2] | 陆鹿, 严立龙, 李秋环, 等, 2016. 洋底高原及其对地球系统意义研究综述[J]. 岩石学报, 32(6): 1851-1876. |
YAN LILONG, LI QIUHUAN, et al, 2016. Oceanic plateau and its significances on the Earth system: A review[J]. Acta Petrologica Sinica, 32(6): 1851-1876. (in Chinese with English abstract) | |
[3] | 罗怡鸣, 张锦昌, 林间, 2019. 太平洋大塔穆火山研究进展及对巨型洋底火山成因的启示[J]. 地球物理学进展, 34(2): 781-795. |
LUO YIMING, ZHANG JINCHANG, LIN JIAN, 2019. Recent research advances on the Tamu Massif in the Pacific Ocean and implications for the formation of large oceanic volcanoes[J]. Progress in Geophysics, 34(2): 781-795. (in Chinese with English abstract) | |
[4] | 庞洁红, 李三忠, 戴黎明, 等, 2011. 太平洋洋底高原和海山成因--重点以Shatsky海隆成因为例[J]. 海洋地质与第四纪地质, 31(2): 1-10. |
PANG JIEHONG, LI SANZHONG, DAI LIMING, et al, 2011. Genesis of oceanic plateaus and seamounts in the Pacific Ocean-A case study of Shatsky Rise[J]. Marine Geology & Quaternary Geology, 31(2): 1-10. (in Chinese with English abstract) | |
[5] | 且钟禹, 1996. 普通地质学[M]. 青岛: 青岛海洋大学出版社: 87-100. |
QIE ZHONGYU, 1996. General geology[M]. Qingdao: Qingdao Ocean University Press: 87-100. (in Chinese) | |
[6] | 宋晓晓, 李春峰, 2016. 西太平洋科学大洋钻探的地球动力学成果[J]. 热带海洋学报, 35(1): 17-30. |
SONG XIAOXIAO, LI CHUNFENG, 2016. Geodynamic results of scientific ocean drilling in the western Pacific[J]. Journal of Tropical Oceanography, 35(1): 17-30. (in Chinese with English abstract) | |
[7] | 徐斐, 周祖翼, 2003. 洋底高原: 了解地球内部的窗口[J]. 地球科学进展, 18(5): 745-752. |
XU FEI, ZHOU ZUYI, 2003. Oceanic plateaus: windows to the earth's interior[J]. Advance in Earth Sciences, 18(5): 745-752. (in Chinese with English abstract) | |
[8] | 徐义刚, 2002. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 9(4): 341-353. |
XU YIGANG, 2002. Mantle plumes, large igneous provinces and their geologic consequences[J]. Earth Science Frontiers, 9(4): 341-353. (in Chinese with English abstract) | |
[9] | ABRAMS L J, LARSON R L, SHIPLEY T H, et al, 1992. The seismic stratigraphy and sedimentary history of the East Mariana and Pigafetta Basins of the western Pacific[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 551-561. |
[10] | ABRAMS L J, LARSON R L, SHIPLEY T H, et al, 1993. Cretaceous volcanic sequences and Jurassic Oceanic Crust in the East Mariana and Pigafetta basins of the western Pacific[M]// PRINGLE M S, SAGER W W, SLITER W V, et al. The Mesozoic pacific: geology, tectonics, and volcanism. Washington, DC: American Geophysical Union: 77-101. |
[11] |
BAUDON C, CARTWRIGHT J, 2008. The kinematics of reactivation of normal faults using high resolution throw mapping[J]. Journal of Structural Geology, 30(8): 1072-1084.
doi: 10.1016/j.jsg.2008.04.008 |
[12] | BEHL R J, SMITH B M, 1992. Silicification of deep-sea sediments and the oxygen isotope composition of diagenetic siliceous rocks from the western Pacific, Pigafetta and East Mariana Basins, Leg 129[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 81-117. |
[13] | BEHN M D, LIN JIAN, ZUBER M T, 2002. Mechanisms of normal fault development at mid-ocean ridges[J]. Journal of Geophysical Research, 107(B4): EPM 7-1-EPM 7-17. |
[14] |
BUCK W R, LAVIER L L, POLIAKOV A N B, 2005. Modes of faulting at mid-ocean ridges[J]. Nature, 434(7034): 719-723.
doi: 10.1038/nature03358 |
[15] |
BUSCH M M, ARROWSMITH J R, UMHOEFER P J, et al, 2011. Geometry and evolution of rift-margin, normal-fault-bounded basins from gravity and geology, La Paz-Los Cabos region, Baja California Sur, Mexico[J]. Lithosphere, 3(2): 110-127.
doi: 10.1130/L113.1 |
[16] |
BUTLER R W H, 2020. Syn-kinematic strata influence the structural evolution of emergent fold-thrust belts[J]. Geological Society, London, Special Publications, 490(1): 57-78.
doi: 10.1144/SP490-2019-14 |
[17] |
CAI CHEN, WIENS D A, SHEN WEISEN, et al, 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature, 563(7731): 389-392.
doi: 10.1038/s41586-018-0655-4 |
[18] |
CANDE S C, LARSON R L, LABRECQUE J L, 1978. Magnetic lineations in the Pacific Jurassic Quiet Zone[J]. Earth and Planetary Science Letters, 41(4): 434-440.
doi: 10.1016/0012-821X(78)90174-7 |
[19] |
CHOI E S, LAVIER L, GURNIS M, 2008. Thermomechanics of mid-ocean ridge segmentation[J]. Physics of the Earth and Planetary Interiors, 171(1-4): 374-386.
doi: 10.1016/j.pepi.2008.08.010 |
[20] |
CHOY G L, KIRBY S H, 2004. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones[J]. Geophysical Journal International, 159(3): 991-1012.
doi: 10.1111/j.1365-246X.2004.02449.x |
[21] |
COLLANEGA L, SIUDA K, JACKSON C A L, et al, 2019. Normal fault growth influenced by basement fabrics: the importance of preferential nucleation from pre-existing structures[J]. Basin Research, 31(4): 659-687.
doi: 10.1111/bre.12327 |
[22] |
DE CASTRO D L, BEZERRA F H R, SOUSA M O L, et al, 2012. Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data[J]. Journal of Geodynamics, 54: 29-42.
doi: 10.1016/j.jog.2011.09.002 |
[23] | EMRY E L, WIENS D A, GARCIA-CASTELLANOS D, 2014. Faulting within the Pacific plate at the Mariana trench: implications for plate interface coupling and subduction of hydrous minerals[J]. Journal of Geophysical Research, 119(4): 3076-3095. |
[24] | EWING J, EWING M, AITKEN T, et al, 2012. North Pacific sediment layers measured by seismic profiling[M]// DRAKEC L, HARTP J.The crust and upper mantle of the pacific area. Washington, DC: American Geophysical Union: 147-173. |
[25] | FACCENDA M, GERYA T V, MANCKTELOW N S, et al, 2012. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling[J]. Geochemistry, Geophysics, Geosystems, 13(1): Q01010. |
[26] | FENG H, LIZARRALDE D, TOMINAGA M, et al, 2015. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific[C]// Proceedings of American geophysical union, fall meeting 2015. |
[27] | FENG H S H, 2016. Seismic constraints on the processes and consequences of secondary igneous evolution of Pacific oceanic lithosphere[D]. Cambridge: Massachusetts Institute of Technology: 57-93. |
[28] |
GIBSON G M, TOTTERDELL J M, WHITE L T, et al, 2013. Pre-existing basement structure and its influence on continental rifting and fracture zone development along Australia's southern rifted margin[J]. Journal of the Geological Society, 170(2): 365-377.
doi: 10.1144/jgs2012-040 |
[29] |
GREENE J A, LIZARRALDE D, TOMINAGA M, et al, 2020. Deep-ocean paleo-seafloor erosion in the northwestern Pacific identified by high-resolution seismic images[J]. Marine Geology, 429: 106330.
doi: 10.1016/j.margeo.2020.106330 |
[30] | HACKER B R, 2008. H2O subduction beyond arcs[J]. Geochemistry, Geophysics, Geosystems, 9(3): Q03001. |
[31] |
HANDSCHUMACHER D W, SAGER W W, HILDE T W C, et al, 1988. Pre-Cretaceous tectonic evolution of the Pacific plate and extension of the geomagnetic polarity reversal time scale with implications for the origin of the Jurassic “Quiet Zone”[J]. Tectonophysics, 155(1-4): 365-380.
doi: 10.1016/0040-1951(88)90275-2 |
[32] |
HEEZEN B C, MACGREGOR I D, FOREMAN H P, et al, 1973. Diachronous deposits: a kinematic interpretation of the post Jurassic sedimentary sequence on the Pacific Plate[J]. Nature, 241(5384): 25-32.
doi: 10.1038/241025a0 |
[33] | HESSE R, 1988. Diagenesis #13. Origin of chert: diagenesis of biogenic siliceous sediments[J]. Geoscience Canada, 15(3): 171-192. |
[34] | HÜNEKE H, HENRICH R, 2011. Chapter 4 - Pelagic sedimentation in modern and ancient oceans[J]. Developments in Sedimentology, 63: 215-351. |
[35] |
JACKSON C A L, ZHANG Y, HERRON D A, et al, 2019. Subsurface expression of a salt weld, Gulf of Mexico[J]. Petroleum Geoscience, 25(1): 102-111.
doi: 10.1144/petgeo2018-008 |
[36] | KARL S M, WANDLESS G A, KARPOFF A M, 1992. Sedimentological and geochemical characteristics of Leg 129 siliceous deposits[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 31-79. |
[37] | KOPPERS A A P, STAUDIGEL H, DUNCAN R A, 2003. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin[J]. Geochemistry, Geophysics, Geosystems, 4(11): 8914. |
[38] | LANCELOT Y, LARSON R L, 1975. Sedimentary and tectonic evolution of the northwestern Pacific[M]// LARSONR L, MOBERLYR.Initial reports of the deep sea drilling project 32. Washington, DC:U.S. Government Printing Office: 925-939. |
[39] |
LARSON R L, CHASE C G, 1972. Late Mesozoic evolution of the western Pacific Ocean[J]. GSA Bulletin, 83(12): 3627-3644.
doi: 10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2 |
[40] |
LARSON R L, HILDE T W C, 1975. A revised time scale of magnetic reversals for the Early Cretaceous and Late Jurassic[J]. Journal of Geophysical Research, 80(17): 2586-2594.
doi: 10.1029/JB080i017p02586 |
[41] | LARSON R L, STEINER M B, ERBA E, et al, 1992. Paleolatitudes and tectonic reconstructions of the oldest portion of the Pacific plate: a comparative study[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 615-631. |
[42] |
MCNEILL L C, HENSTOCK T J, 2014 Forearc structure and morphology along the Sumatra-Andaman subduction zone[J]. Tectonics, 33(2): 112-134.
doi: 10.1002/2012TC003264 |
[43] | MITCHUM JR R M, VAIL P R, SANGREE J B, 1977. Seismic stratigraphy and global changes of sea level, part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences[M]// PAYTONC E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists: 117-143. |
[44] |
MOORE JR T C, 2008. Chert in the pacific: biogenic silica and hydrothermal circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1-2): 87-99.
doi: 10.1016/j.palaeo.2008.01.009 |
[45] |
MORGAN W J, 1968. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 73(6): 1959-1982.
doi: 10.1029/JB073i006p01959 |
[46] |
MORLEY C K, KING R, HILLIS R, et al, 2011. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: a review[J]. Earth-Science Reviews, 104(1-3): 41-91.
doi: 10.1016/j.earscirev.2010.09.010 |
[47] | MÜLLER R D, SDROLIAS M, GAINA C, et al, 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. |
[48] |
NAKANISHI M, TAMAKI K, KOBAYASHI K, 1992. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean[J]. Geophysical Journal International, 109(3): 701-719.
doi: 10.1111/j.1365-246X.1992.tb00126.x |
[49] |
OGG J G, COE A L, PRZYBYLSKI P A, et al, 2010. Oxfordian magnetostratigraphy of Britain and its correlation to Tethyan regions and Pacific marine magnetic anomalies[J]. Earth and Planetary Science Letters, 289(3-4): 433-448.
doi: 10.1016/j.epsl.2009.11.031 |
[50] |
OSAGIEDE E E, DUFFY O B, JACKSON C A L, et al, 2014. Quantifying the growth history of seismically imaged normal faults[J]. Journal of Structural Geology, 66: 382-399.
doi: 10.1016/j.jsg.2014.05.021 |
[51] |
PARAI R, MUKHOPADHYAY S, 2012. How large is the subducted water flux? New constraints on mantle regassing rates[J]. Earth and Planetary Science Letters, 317-318: 396-406.
doi: 10.1016/j.epsl.2011.11.024 |
[52] | PIMM A C, GARRISON R E, BOYCE R E, 1971. Sedimentology synthesis: lithology, chemistry and physical properties of sediments in the northwestern Pacific Ocean[M]// FISCHER A G. Washington, DC: Initial Reports of the Deep Sea Drilling Project (DSDP 6): 1131-1252. |
[53] |
PROCTER A, SANDERSON D J, 2018. Spatial and layer-controlled variability in fracture networks[J]. Journal of Structural Geology, 108: 52-65.
doi: 10.1016/j.jsg.2017.07.008 |
[54] |
ROTEVATN A, JACKSON C A L, TVEDT A B M, et al, 2019. How do normal faults grow?[J]. Journal of Structural Geology, 125: 174-184.
doi: 10.1016/j.jsg.2018.08.005 |
[55] | ROWAN M G, PEEL F J, VENDEVILLE B C, 2004. Gravity-driven Fold Belts on passive margins[M]//MCCLAY K R. Thrust tectonics and hydrocarbon systems. Tulsa: American Association of Petroleum Geologists: 157-182. |
[56] |
RÜPKE L H, MORGAN J P, HORT M, et al, 2004. Serpentine and the subduction zone water cycle[J]. Earth and Planetary Science Letters, 223(1-2): 17-34.
doi: 10.1016/j.epsl.2004.04.018 |
[57] |
SAGER W W, WEISS C J, TIVEY M A, et al, 1998. Geomagnetic polarity reversal model of deep-tow profiles from the Pacific Jurassic Quiet Zone[J]. Journal of Geophysical Research, 103(B3): 5269-5286.
doi: 10.1029/97JB03404 |
[58] |
SANDWELL D T, MÜLLER R D, SMITH W H F, et al, 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 346(6205): 65-67.
doi: 10.1126/science.1258213 |
[59] | SHIPBOARD SCIENTIFIC PARTY, 1990a. Site 800[C]// LANCELOT Y, LARSON R. Proceedings of the ocean drilling program, initial reports (vol. 129) of the ocean drilling program. College Station: 33-89. |
[60] | SHIPBOARD SCIENTIFIC PARTY 1990b. Site 801[C]// LANCELOT Y, LARSON R. Proceedings of the ocean drilling program, initial reports (vol. 129) of the ocean drilling program. College Station: 91-170. |
[61] |
STADLER T J, TOMINAGA M, 2015. Intraplate volcanism of the western Pacific: new insights from geological and geophysical observations in the Pigafetta Basin[J]. Geochemistry, Geophysics, Geosystems, 16(9): 3015-3033.
doi: 10.1002/2015GC005873 |
[62] | TOMINAGA M, SAGER W W, TIVEY M A, et al, 2008. Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior[J]. Journal of Geophysical Research, 113(B7): B07110. |
[63] |
TOMINAGA M, TIVEY M A, SAGER W W, 2015. Nature of the Jurassic magnetic quiet zone[J]. Geophysical Research Letters, 42(20): 8367-8372.
doi: 10.1002/2015GL065394 |
[64] | TOMINAGA M, TIVEY M A, SAGER W W, 2021. A new middle to Late Jurassic Geomagnetic Polarity Time Scale (GPTS) from a multiscale marine magnetic anomaly survey of the Pacific Jurassic Quiet Zone[J]. Journal of Geophysical Research, 126(3): e2020JB021136. |
[65] | TOMINAGA M, TIVEY M, LIZARRALDE D, et al, 2012. Multi-channel seismic field data in the Hawaiian Lineation Jurassic magnetic Quiet Zone, North Pacific Ocean, acquired by the R/V Thomas G. Thompson in 2011 (TN272)[DB/OL]. Academic Seismic Portal at UTIG. Marine Geoscience Data System. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/500209. |
[66] |
TVEDT A B M, ROTEVATN A, JACKSON C A L, et al, 2013. Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea[J]. Journal of Structural Geology, 55: 1-20.
doi: 10.1016/j.jsg.2013.08.002 |
[67] |
WOLFSON-SCHWEHR M, BOETTCHER M S, MCGUIRE J J, et al., 2014. The relationship between seismicity and fault structure on the Discovery transform fault, East Pacific Rise[J]. Geochemistry, Geophysics, Geosystems, 15(9): 3698-3712.
doi: 10.1002/2014GC005445 |
[68] |
XUE JING, KING S D, 2016. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean[J]. Physics of the Earth and Planetary Interiors, 257: 137-148.
doi: 10.1016/j.pepi.2016.05.018 |
[69] |
YANG XIAODONG, PEEL F J, MCNEILL L C, et al, 2020. Comparison of fold-thrust belts driven by plate convergence and gravitational failure[J]. Earth-Science Reviews, 203: 103136.
doi: 10.1016/j.earscirev.2020.103136 |
[70] |
ZHOU ZHIYUAN, LIN JIAN, BEHN M D, et al, 2015. Mechanism for normal faulting in the subducting plate at the Mariana trench[J]. Geophysical Research Letters, 42(11): 4309-4317.
doi: 10.1002/2015GL063917 |
[1] | Maochuan ZHANG, Min XU, Xu ZHAO, Jiazheng ZHANG, Caicai ZHA, M. V. P. Vithana, Huizhe DI, Xin ZENG. Application of Kirchhoff downward-continued method to travel-time inversion of synthetic multi-channel seismic data [J]. Journal of Tropical Oceanography, 2020, 39(4): 80-90. |
[2] | Ken MENG, Huawei QIN, Xinke ZHU, Fei HOU. Design and test of a new mobile submersible deep-sea seismic recording system [J]. Journal of Tropical Oceanography, 2020, 39(3): 49-56. |
[3] | Zhen JIN, Xiaoran GUO, Fangying CHEN. Correction of made-in-China OBS raw data based on 2019 Fujian and Taiwan Straits crustal structures in sea-land exploration experiments [J]. Journal of Tropical Oceanography, 2020, 39(3): 42-48. |
[4] | Xu ZHAO, Min XU, Xin ZENG, Jian LIN. Review of tsunami caused by large earthquakes along the Sumatra and Makran subduction zones in the North Indian Ocean [J]. Journal of Tropical Oceanography, 2017, 36(6): 62-70. |
[5] | PAN Wen-liang, WANG Sheng-an, SUN Lu, LONG Xiao-min. Observed waveform and characteristics of the 2010 Chile and 2011 Japan tsunamis near the coast of South China [J]. Journal of Tropical Oceanography, 2014, 33(6): 17-23. |
[6] | MA Hui, XU He-hua, ZHAO Jun-feng, WAN Ju-ying, CHEN Ai-hua, LIU Tang-wei. Thermal structure of Nansha Trough Foreland Basin [J]. Journal of Tropical Oceanography, 2012, 31(3): 155-161. |
[7] | ZHANG Huo-dai, TAN Xiao-dong, ZHOU Di, LI Ming-han, CHEN Han-zong, TANG Xian-zan. Paleomagnetic results and magnetic characteristics of rocks from Lower Jurassic rocks in the northern margin of the South China Sea [J]. Journal of Tropical Oceanography, 2012, 31(3): 103-112. |
[8] | CAO Jing-he, XIA Shao-hong, SUN Jin-long, ZHU Jun-jiang, XU Hui-long. Preliminary results of onshore-offshore seismic experiments in a potential strong earthquake area off the Pearl River Estuary [J]. Journal of Tropical Oceanography, 2012, 31(3): 71-78. |
[9] | PAN Wen-liang,WANG Sheng-an,CAI Shu-qun. Simulation of potential tsunami hazards in the South China Sea [J]. Journal of Tropical Oceanography, 2009, 28(6): 7-14. |
[10] | WAN Pin-Xian. [J]. Journal of Tropical Oceanography, 2009, 28(3): 1-4. |
|