Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (3): 16-28.doi: 10.11978/2021142CSTR: 32234.14.2021142
• Marine Geochemistry • Previous Articles Next Articles
SHANG Bowen1,2,3, WU Yunchao1,2, JIANG Zhijian1,2,3, LIU Songlin1,2, HUANG Xiaoping1,2,3()
Received:
2021-10-25
Revised:
2021-12-16
Published:
2021-12-20
Contact:
HUANG Xiaoping
E-mail:xphuang@sciso.ac.cn
Supported by:
CLC Number:
SHANG Bowen, WU Yunchao, JIANG Zhijian, LIU Songlin, HUANG Xiaoping. Characteristics and sources of organic matter in sediments of the Pearl River Estuary: Carbon storage implications[J].Journal of Tropical Oceanography, 2022, 41(3): 16-28.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Environmental parameters of sediment and bottom water in the PRE"
区域 | 站位 | 深度/m | Mz/Φ | 粉砂/% | 黏土/% | Eh/mV | 盐度/‰ | DO/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | 夏季 | 冬季 | ||
口内区 | S1 | 14.0 | 7.1 | 62.0 | 29.7 | -167 | 20.4 | 6.92 | |||||||
S2 | 12.0 | 12.0 | 7.5 | 7.2 | 63.5 | 65.5 | 35.6 | 32.3 | -230 | -181 | 15.8 | 21.1 | 4.86 | 7.03 | |
S3 | 7.8 | 5.7 | 7.3 | 6.7 | 67.3 | 63.7 | 32.1 | 28.2 | -233 | -109 | 8.7 | 24.4 | 7.15 | 7.52 | |
S6 | 4.0 | 4.4 | 7.2 | 7.5 | 64.9 | 63.0 | 32.4 | 36.4 | -203 | -158 | 9.8 | 19.8 | 4.10 | 8.19 | |
平均 | 9.2±4.1 | 7.2±0.3 | 64.0±1.8 | 32.0±2.9 | -188±44 | 17.6±6.0 | 6.54±1.48 | ||||||||
混合区 | S4 | 4.5 | 14.4 | 6.8 | 7.4 | 51.5 | 64.7 | 33.1 | 34.4 | -155 | -181 | 19.9 | 30.3 | 7.90 | 7.62 |
S5 | 7.0 | 9.0 | 7.4 | 6.9 | 57.0 | 59.4 | 37.8 | 31.3 | -126 | -165 | 16.2 | 28.2 | 3.80 | 7.59 | |
S7 | 6.6 | 6.9 | 5.8 | 6.7 | 45.7 | 64.2 | 22.0 | 28.1 | -155 | -188 | 26.8 | 30.9 | 5.70 | 7.81 | |
S8 | 6.9 | 6.9 | 6.0 | 6.4 | 48.0 | 58.1 | 24.7 | 26.5 | -158 | -142 | 29.3 | 31.8 | 7.29 | 7.68 | |
S9 | 5.4 | 5.5 | 7.1 | 7.2 | 65.4 | 63.6 | 31.7 | 33.6 | -170 | -140 | 16.2 | 26.6 | 5.30 | 7.93 | |
S10 | 13.5 | 15.0 | 6.4 | 6.2 | 61.6 | 60.3 | 24.9 | 23.8 | -240 | -145 | 32.2 | 32.1 | 5.84 | 7.28 | |
S11 | 7.4 | 6.5 | 6.8 | 7.0 | 66.0 | 67.1 | 27.6 | 29.7 | -195 | -170 | 30.4 | 26.7 | 5.70 | 8.07 | |
S12 | 8.4 | 6.3 | 6.7 | 6.4 | 63.8 | 67.5 | 27.4 | 23.4 | -190 | -131 | 31.5 | 26.9 | 6.80 | 7.45 | |
平均 | 8.1±3.2 | 6.7±0.5 | 60.2±6.7 | 28.7±4.6 | -165±29 | 27.3±5.3 | 6.86±1.23 | ||||||||
口外区 | S13 | 23.0 | 30.0 | 5.8 | 5.5 | 45.7 | 41.5 | 24.0 | 22.0 | -188 | -145 | 33.9 | 32.4 | 4.40 | 7.25 |
S14 | 27.0 | 24.6 | 6.9 | 7.0 | 68.2 | 67.7 | 27.4 | 27.6 | -130 | -172 | 34.0 | 32.3 | 5.50 | 7.30 | |
S15 | 29.4 | 23.5 | 6.3 | 5.9 | 59.7 | 54.2 | 23.6 | 22.5 | -121 | -125 | 34.0 | 32.2 | 5.60 | 7.24 | |
S16 | 29.6 | 29.0 | 5.9 | 4.9 | 55.7 | 37.4 | 23.0 | 17.0 | -177 | -132 | 33.9 | 32.4 | 5.70 | 7.06 | |
S17 | 32.5 | 33.0 | 5.1 | 5.6 | 39.3 | 46.3 | 18.2 | 22.0 | -134 | -119 | 34.0 | 33.4 | 5.80 | 6.90 | |
S18 | 38.0 | 40.0 | 6.7 | 7.0 | 68.1 | 69.4 | 25.2 | 28.4 | -144 | -107 | 34.3 | 33.4 | 5.60 | 6.90 | |
S19 | 41.8 | 41.0 | 6.2 | 5.8 | 58.7 | 56.5 | 22.9 | 20.9 | -116 | -121 | 34.4 | 33.6 | 5.98 | 6.76 | |
S20 | 37.0 | 33.0 | 5.4 | 4.5 | 50.1 | 35.5 | 21.0 | 15.2 | -180 | -179 | 34.4 | 33.9 | 6.22 | 6.77 | |
平均 | 32.1±6.1 | 5.9±0.7 | 53.4±11.6 | 22.6±8.7 | -143±27 | 33.5±0.8 | 5.86±0.84 |
Tab. 3
Fluorescence intensity and spectral parameters of SDOM in the PRE"
季节 | 口内区 | 混合区 | 口外区 | ||
---|---|---|---|---|---|
荧光强度 | 夏季 | A峰 | 135.9±35.6a | 98.3±14.8b | 73.7±17.7c |
C峰 | 139.9±21.9a | 86.3±12.4b | 68.9±16.2c | ||
M峰 | 234.7±25.7a | 152.9±21.5b | 128.6±26.9b | ||
B峰 | 14.1±2.6 | 11.7±1.8 | 12.2±2.8 | ||
T峰 | 49.2±4.7a | 37.5±3.3b | 34.5±8.4b | ||
冬季 | A峰 | 113.2±20.5a | 80.0±19.7b | 64.3±26.4b | |
C峰 | 90.2±15.9a | 60.0±16.7b | 50.6±21.2b | ||
M峰 | 155.8±15.3a | 104.5±27.9b | 94.0±35.8b | ||
B峰 | 25.6±14.1 | 21.4±8.9 | 14.6±4.0 | ||
T峰 | 49.3±14.6 | 39.9±7.6 | 37.5±11.1 | ||
荧光参数 | 夏季 | FI | 2.14±0.07a | 2.24±0.07b | 2.40±0.07c |
β:α | 0.79±0.02a | 0.87±0.04b | 1.15±0.04c | ||
BIX | 0.84±0.11a | 0.94±0.05b | 1.29±0.05c | ||
HIX | 0.66±0.05a | 0.62±0.03ab | 0.58±0.07b | ||
冬季 | FI | 2.22±0.08a | 2.30±0.10ab | 2.39±0.08b | |
β:α | 0.86±0.05a | 0.87±0.06a | 1.03±0.10b | ||
BIX | 0.93±0.07a | 0.94±0.07a | 1.13±0.11b | ||
HIX | 0.60±0.07 | 0.54±0.05 | 0.52±0.06 |
Tab. 4
Correlations of sediment Fe3+ with SDOM fluorescence intensity and TOC in the PRE"
季节 | Fe3+ | A峰 | C峰 | M峰 | B峰 | T峰 | TOC | |
---|---|---|---|---|---|---|---|---|
夏季 | Fe3+ | 1 | ||||||
A峰 | -0.505* | 1 | ||||||
C峰 | -0.471* | -0.987** | 1 | |||||
M峰 | -0.460* | 0.973** | 0.996** | 1 | ||||
B峰 | -0.012 | 0.119 | 0.142 | 0.147 | 1 | |||
T峰 | -0.361 | 0.831** | 0.850** | 0.864** | 0.459* | 1 | ||
TOC | -0.224 | 0.701** | 0.687** | 0.685** | 0.128 | 0.627** | 1 | |
冬季 | Fe3+ | 1 | ||||||
A峰 | -0.475* | 1 | ||||||
C峰 | -0.489* | 0.986** | 1 | |||||
M峰 | -0.431 | 0.970** | 0.974** | 1 | ||||
B峰 | -0.593** | 0.400 | 0.427 | 0.465* | 1 | |||
T峰 | -0.578** | 0.715** | 0.720** | 0.760** | 0.743** | 1 | ||
TOC | -0.734** | 0.616** | 0.602** | 0.539* | 0.450* | 0.505* | 1 |
[1] | 程远月, 郭卫东, 夏恩琴, 等, 2008. 厦门湾沉积物间隙水中CDOM的荧光特性及其分布研究[J]. 台湾海峡, 27(1): 8-14. |
CHENG YUANYUE, GUO WEIDONG, XIA ENQIN, et al, 2008. Fluorescence characteristics of chromophoric dissolved organic matter and its distribution in sediment pore waters from Xiamen Bay[J]. Journal of Oceanography in Taiwan Strait, 27(1): 8-14. (in Chinese with English abstract) | |
[2] | 郭卫东, 王超, 徐静, 等, 2018. 海洋有机质的光谱分析方法评述[J]. 海洋通报, 37(6): 601-614. |
GUO WEIDONG, WANG CHAO, XU JING, et al, 2018. A review on the spectral analysis of marine organic matter[J]. Marine Science Bulletin, 37(6): 601-614. (in Chinese with English abstract) | |
[3] | 郭卫东, 王超, 李炎, 等, 2020. 水环境中溶解有机质的光谱表征: 从流域到深海[J]. 地球科学进展, 35(9): 933-947. |
GUO WEIDONG, WANG CHAO, LI YAN, et al, 2020. Characterization of aquatic dissolved organic matter by spectral analysis: from watershed to deep ocean[J]. Advances in Earth Science, 35(9): 933-947. (in Chinese with English abstract) | |
[4] | 韩永强, 夏嘉, 谭靖千, 等, 2020. 环雷州半岛近海表层沉积物有机碳分布及其控制因素分析[J]. 海洋科学, 44(3): 93-103. |
HAN YONGQIANG, XIA JIA, TAN JINGQIAN, et al, 2020. Distribution and controlling factors of organic carbon in surface sediments of the coastal region surrounding Leizhou Peninsula[J]. Marine Science, 44(3): 93-103. (in Chinese with English abstract) | |
[5] |
贾淇文, 章桂芳, 唐世林, 等, 2021. 2013-2018年珠江河口伶仃洋水域悬浮泥沙季节性变化分析[J]. 中山大学学报(自然科学版), 60(5): 59-71.
doi: 10.13471/j.cnki.acta.snus.2020D001 |
JIA QIWEN, ZHANG GUIFANG, TANG SHILIN, et al, 2021. Seasonal variation of suspended sediments in the Lingdingyang waters of the Pearl River Estuary from 2013 to 2018[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60(5): 59-71, doi: 10.13471/j.cnki.acta.snus.2020D001. (in Chinese with English abstract)
doi: 10.13471/j.cnki.acta.snus.2020D001 |
|
[6] | 江四义, 郑兆勇, 2008. 从珠江口沉积物粒度参数特征分析泥沙来源及其运移趋势[J]. 中山大学学报(自然科学版), 47(S1): 126-129. |
JIANG SIYI, ZHENG ZHAOYONG, 2008. Sediment sources and transport tendency based on grain-size parameters in estuary of the Pearl River[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(S1): 126-129. (in Chinese with English abstract) | |
[7] | 连忠廉, 江志坚, 黄小平, 等, 2019. 珠江口表层沉积物有机碳不同浸提组分的空间分布特征[J]. 海洋环境科学, 38(3): 391-398. |
LIAN ZHONGLIAN, JIANG ZHIJIAN, HUANG XIAOPING, et al, 2019. Distribution of labile organic carbon using different extract method in the surface sediments of Pearl River Estuary[J]. Marine Environmental Science, 38(3): 391-398. (in Chinese with English abstract) | |
[8] | 刘广州, 胡嘉镗, 李适宇, 2020. 珠江口夏季海陆源有机碳的模拟研究--分布特征、贡献比重及其迁移转化过程[J]. 中国环境科学, 40(1): 162-173. |
LIU GUANGZHOU, HU JIATANG, LI SHIYU, 2020. Simulation of marine and terrestrial organic carbon in the Pearl River Estuary in summer--distribution characteristics, contribution rate and migration and transformation processes[J]. China Environmental Science, 40(1): 162-173. (in Chinese with English abstract) | |
[9] | 唐诚, 赵艳, 张华, 等, 2013. 珠江口近30年海底表层沉积物粒度分布及其环境变化[J]. 海洋科学, 37(5): 61-70. |
TANG CHENG, ZHAO YAN, ZHANG HUA, et al, 2013. The changes of sea surface grain size distribution and its sedimentary environment during the last 30 years in the Zhujiang River Estuary[J]. Marine Sciences, 37(5): 61-70. (in Chinese with English abstract) | |
[10] | 陶婧, 马伟伟, 李文君, 等, 2017. 南黄海沉积物中活性铁氧化物对有机碳的保存作用[J]. 海洋学报, 39(8): 16-24. |
TAO JING, MA WEIWEI, LI WENJUN, et al, 2017. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments[J]. Haiyang Xuebao, 39(8): 16-24. (in Chinese with English abstract) | |
[11] | 王华新, 线薇微, 2011. 长江口表层沉积物有机碳分布及其影响因素[J]. 海洋科学, 35(5): 24-31. |
WANG HUAXIN, XIAN WEIWEI, 2011. Distribution of the total organic carbon of surface sediment and its influence factors in the Yangtze River Estuary[J]. Marine Sciences, 35(5): 24-31. (in Chinese with English abstract) | |
[12] | 韦海伦, 蔡进功, 王国力, 等, 2018. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 33(10): 1024-1033. |
WEI HAILUN, CAI JINGONG, WANG GUOLI, et al, 2018. The diversity of organic matter in marine sediments and the suspiciousness of source parameters: a review[J]. Advances in Earth Science, 33(10): 1024-1033. (in Chinese with English abstract) | |
[13] | 吴金浩, 刘桂英, 王年斌, 等, 2012. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 30(2): 333-339. |
WU JINHAO, LIU GUIYING, WANG NIANBIN, et al, 2012. The Eh in surface sediments in the Northern of Liaodong Bay and its main influencing factors[J]. Acta Sedimentologica Sinica, 30(2): 333-339. (in Chinese with English abstract) | |
[14] |
徐阳, 李朋辉, 张传伦, 等, 2021. 珠江口沉积物溶解性有机质来源及光谱特征的空间变化[J]. 中国科学 D辑: 地球科学, 51(1): 63-72.
doi: 10.1007/s11430-020-9671-9 |
XU YANG, LI PENGHUI, ZHANG CHUANLUN, et al, 2021. Spectral characteristics of dissolved organic matter in sediment pore water from Pearl River Estuary[J]. Science China: Earth Sciences, 64(1): 52-61.
doi: 10.1007/s11430-020-9671-9 |
|
[15] | 张凌, 陈繁荣, 殷克东, 等, 2010. 珠江口及近海表层沉积有机质的特征和来源[J]. 热带海洋学报, 29(1): 98-103. |
ZHANG LING, CHEN FANRONG, YIN KEDONG, et al, 2010. The characteristics and sources of surface sediments in the Pearl River Estuary and its adjacent shelves[J]. Journal of Tropical Oceanography, 29(1): 98-103. (in Chinese with English abstract) | |
[16] |
BARRAL M T, ARIAS M, GUÉRIF J, 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil and Tillage Research, 46(3-4): 261-272.
doi: 10.1016/S0167-1987(98)00092-0 |
[17] | BAUER J E, BIANCHI T S, 2011. Dissolved organic carbon cycling and transformation[J]. Treatise on Estuarine and Coastal Science, 5: 7-67. |
[18] |
BLAIR N E, ALLER R C, 2012. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 4: 401-423.
doi: 10.1146/annurev-marine-120709-142717 |
[19] |
CHEN CHUNMEI, HALL S J, COWARD E, et al, 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 11(1): 2255.
doi: 10.1038/s41467-020-16071-5 |
[20] |
CHEN MEILIAN, KIM S H, JUNG H J, et al, 2017. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: production, benthic flux, and environmental implications[J]. Water Research, 121: 150-161.
doi: 10.1016/j.watres.2017.05.022 |
[21] |
COBLE P G, 2007. Marine optical biogeochemistry: the chemistry of ocean color[J]. Chemical Reviews, 107(2): 402-418.
doi: 10.1021/cr050350+ |
[22] |
GAO XUELU, YANG YUWEI, WANG CHUANYUAN, 2012. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures[J]. Marine Pollution Bulletin, 64(6): 1148-1155.
doi: 10.1016/j.marpolbul.2012.03.028 |
[23] |
GIREESHKUMAR T R, DEEPULAL P M, CHANDRAM OHANAKUMAR N, 2013. Distribution and sources of sedimentary organic matter in a tropical estuary, south west coast of India (Cochin estuary): a baseline study[J]. Marine Pollution Bulletin, 66(1-2): 239-245.
doi: 10.1016/j.marpolbul.2012.10.002 |
[24] |
GU YANGGUANG, OUYANG JUN, NING JIAJIA, et al, 2017. Distribution and sources of organic carbon, nitrogen and their isotopes in surface sediments from the largest mariculture zone of the eastern Guangdong coast, South China[J]. Marine Pollution Bulletin, 120(1-2): 286-291.
doi: 10.1016/j.marpolbul.2017.05.013 |
[25] |
HAN LULU, WANG YINGHUI, XU YUNPING, et al, 2021. Water- and base-extractable organic matter in sediments from lower Yangtze River-Estuary-East China sea continuum: insight into accumulation of organic carbon in the river-dominated margin[J]. Frontiers in Marine Science, 8: 617241.
doi: 10.3389/fmars.2021.617241 |
[26] |
HE WEI, JUNG H, LEE J H, et al, 2016. Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments: insight into distribution behavior of sediment organic matter[J]. Science of the Total Environment, 547: 1-8.
doi: 10.1016/j.scitotenv.2015.12.146 |
[27] |
HEDGES J I, KEIL R G, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 49(2-3): 81-115.
doi: 10.1016/0304-4203(95)00008-F |
[28] |
HELMS J R, STUBBINS A, RITCHIE J D, et al, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 53(3): 955-969.
doi: 10.4319/lo.2008.53.3.0955 |
[29] |
HOU PENGFEI, EGLINTON T I, YU MENG, et al, 2021. Degradation and aging of terrestrial organic carbon within estuaries: biogeochemical and environmental implications[J]. Environmental Science & Technology, 55(15): 10852-10861.
doi: 10.1021/acs.est.1c02742 |
[30] |
HU JIANFANG, PENG PING'AN, JIA GUODONG, et al, 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River Estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 98(2-4): 274-285.
doi: 10.1016/j.marchem.2005.03.008 |
[31] | HUTCHINGS J A, BIANCHI T S, NAJJAR R G, et al, 2020. Carbon deposition and burial in estuarine sediments of the contiguous United States[J]. Global Biogeochemical Cycles, 34(2): e2019GB006376. |
[32] |
LAI ZHIGANG, MA RONGHUA, GAO GUANGYIN, et al, 2015. Impact of multichannel river network on the plume dynamics in the Pearl River Estuary[J]. Journal of Geophysical Research: Oceans, 120(8): 5766-5789.
doi: 10.1002/2014JC010490 |
[33] |
LALONDE K, MUCCI A, OUELLET A, et al, 2012. Preservation of organic matter in sediments promoted by iron[J]. Nature, 483(7388): 198-200.
doi: 10.1038/nature10855 |
[34] |
LI MAOMAO, KONG FANLONG, LI YUE, et al, 2020. Ecological indication based on source, content, and structure characteristics of dissolved organic matter in surface sediment from Dagu River estuary, China[J]. Environmental Science and Pollution Research, 27(36): 45499-45512.
doi: 10.1007/s11356-020-10456-1 |
[35] |
LIAN ZHONGLIAN, JIANG ZHIJIAN, HUANG XIAOPING, et al, 2018. Labile and recalcitrant sediment organic carbon pools in the Pearl River Estuary, southern China[J]. Science of the Total Environment, 640-641: 1302-1311.
doi: 10.1016/j.scitotenv.2018.05.389 |
[36] |
LINKHORST A, DITTMAR T, WASKA H, 2017. Molecular fractionation of dissolved organic matter in a shallow subterranean estuary: the role of the iron curtain[J]. Environmental Science & Technology, 51(3): 1312-1320.
doi: 10.1021/acs.est.6b03608 |
[37] |
MOYER R P, BAUER J E, GROTTOLI A G, 2013. Carbon isotope biogeochemistry of tropical small mountainous river, estuarine, and coastal systems of Puerto Rico[J]. Biogeochemistry, 112(1-3): 589-612.
doi: 10.1007/s10533-012-9751-y |
[38] |
MURPHY K R, BUTLER K D, SPENCER R G M, et al, 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison[J]. Environmental Science & Technology, 44(24): 9405-9412.
doi: 10.1021/es102362t |
[39] |
OGAWA Y, OKAMOTO Y, SADABA R B, et al, 2021. Sediment organic matter source estimation and ecological classification in the semi-enclosed Batan Bay Estuary, Philippines[J]. International Journal of Sediment Research, 36(1): 110-119.
doi: 10.1016/j.ijsrc.2020.05.007 |
[40] |
PENG XIANZHI, XIONG SONGSONG, OU WEIHUI, et al, 2017. Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China[J]. Journal of Hazardous Materials, 323: 139-146.
doi: 10.1016/j.jhazmat.2016.05.020 |
[41] |
RAYMOND P A, BAUER J E, 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis[J]. Organic Geochemistry, 32(4): 469-485.
doi: 10.1016/S0146-6380(00)00190-X |
[42] | RIEDEL T, ZAK D, BIESTER H, et al, 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(25): 10101-10105. |
[43] |
SHIELDS M R, BIANCHI T S, GÉLINAS Y, et al, 2016. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters, 43(3): 1149-1157.
doi: 10.1002/2015GL067388 |
[44] |
WANG JINPENG, YAO PENG, BIANCHI T S, et al, 2015. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Chemical Geology, 402: 52-67.
doi: 10.1016/j.chemgeo.2015.02.040 |
[45] |
WANG QIONGQIONG, HE XIAO, HUANG X H H, et al, 2017. Impact of secondary organic aerosol tracers on tracer-based source apportionment of organic carbon and PM2.5: a case study in the Pearl River Delta, China[J]. ACS Earth and Space Chemistry, 1(9): 562-571.
doi: 10.1021/acsearthspacechem.7b00088 |
[46] |
WU XIAODAN, WU BIN, JIANG MINGYU, et al, 2020. Distribution, sources and burial flux of sedimentary organic matter in the East China Sea[J]. Journal of Oceanology and Limnology, 38(5): 1488-1501.
doi: 10.1007/s00343-020-0037-2 |
[47] |
YAO PENG, YU ZHIGANG, BIANCHI T S, et al, 2015. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Journal of Geophysical Research: Biogeosciences, 120(7): 1407-1429.
doi: 10.1002/2014JG002831 |
[48] |
YIN GUOYU, HOU LIJUN, LIU MIN, et al, 2017. DNRA in intertidal sediments of the Yangtze Estuary[J]. Journal of Geophysical Research: Biogeosciences, 122(8): 1988-1998.
doi: 10.1002/2017JG003766 |
[49] |
ZENG QIANG, HUANG LIUQIN, MA JINGYU, et al, 2020. Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: effect of montmorillonite and fate of organic matter[J]. Geochimica et Cosmochimica Acta, 276: 327-344.
doi: 10.1016/j.gca.2020.03.011 |
[50] |
ZHANG LING, YIN KEDONG, WANG LU, et al, 2009. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China[J]. Estuarine, Coastal and Shelf Science, 85(2): 190-196.
doi: 10.1016/j.ecss.2009.07.035 |
[51] |
ZHANG SHANSHAN, LIANG CUI, XIAN WEIWEI, 2020. Spatial and temporal distributions of terrestrial and marine organic matter in the surface sediments of the Yangtze River estuary[J]. Continental Shelf Research, 203: 104158.
doi: 10.1016/j.csr.2020.104158 |
[52] |
ZHAO BIN, YAO PENG, BIANCHI T S, et al, 2018. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments[J]. Journal of Geophysical Research: Biogeosciences, 123(12): 3556-3569.
doi: 10.1029/2018JG004649 |
[53] | ZHAO BIN, YAO PENG, BIANCHI T S, et al, 2021. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 35(4): e2020GB006608. |
[54] |
ZHOU YUPING, HE DING, HE CHEN, et al, 2021. Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: implications for the seaward transport of estuarine DOM[J]. Science of the Total Environment, 759: 143531.
doi: 10.1016/j.scitotenv.2020.143531 |
[1] | SONG Xingyu, LIN Yajun, ZHANG Liangkui, XIANG Chenhui, HUANG Yadong, ZHENG Chuanyang. Distribution characteristics and influencing factors of meso- and micro-zooplankton communities in the offshore waters of the Guangdong-Hong Kong-Macao Greater Bay Area* [J]. Journal of Tropical Oceanography, 2023, 42(3): 136-148. |
[2] | TANG Ling, NIE Yuhua, WANG Ping, TANG Chaolian. Trend analysis of marine heatwaves variability in the outer Pearl River estuary from 1974 to 2020 [J]. Journal of Tropical Oceanography, 2022, 41(6): 143-150. |
[3] | YIN Tianqi, WANG Qing, YANG Yufeng, CEN Jingyi. Comparative study on zooplankton community structure in Pearl River Estuary based on morphological and DNA identification [J]. Journal of Tropical Oceanography, 2022, 41(3): 172-185. |
[4] | ZENG Dianting, LI Junyi, XIE Lingling, YE Xiaomin, ZHOU Da. Analysis of temporal characteristics of chlorophyll a in Lingding Bay during summer [J]. Journal of Tropical Oceanography, 2022, 41(2): 16-25. |
[5] | SHUAI Yiping, CHEN Yinchao, LIU Zijia, GE Zaiming, MA Mengzhen, ZHANG Yuanfang, LI Qian. Distribution of Pearl-River diluted water and its ecological characteristics during spring monsoon transitional period in 2016* [J]. Journal of Tropical Oceanography, 2021, 40(5): 63-71. |
[6] | LAN Xuan, LI Feng, ZHANG Chao, DONG Hanying, YANG Qingshu, YU Minghui, WEN Rubing, YANG Yujie. Ecological risk assessment of thallium in Pearl River Estuary and network based on the SOM model [J]. Journal of Tropical Oceanography, 2021, 40(3): 132-142. |
[7] | CAI Jiannan, LIU Hailong, JIANG Bo, CHEN Yinhui, LI Jiehong, WU Sixiao, LIANG Jianxia, HUANG Hua, XING Qianguo. Retrieval of non-optically active water quality parameters by hyperspectra for river network waters in the Pearl River estuary [J]. Journal of Tropical Oceanography, 2021, 40(1): 58-64. |
[8] | SU Xinying, ZHONG Yu, LI Yao, TAN Meiting, HUANG Yadong, LIU Shan, XU Xiangrong, SONG Xingyu. Distribution characteristics and influencing factors of phytoplankton in waters around typical islands in the Pearl River Estuary* [J]. Journal of Tropical Oceanography, 2020, 39(5): 30-42. |
[9] | YANG Bifeng, XIONG Cheng, CAO Jinghe, SUN Jinlong, WAN Kuiyuan, XIA Shaohong. Constrains of sliding wave phases on the low-velocity layer in the Pearl River Estuary [J]. Journal of Tropical Oceanography, 2020, 39(1): 106-119. |
[10] | YAN Dong, SONG Dehai, BAO Xianwen. Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season [J]. Journal of Tropical Oceanography, 2020, 39(1): 20-35. |
[11] | Suying OU. Surface suspended sediment distribution of Pearl River estuary under tropical storms with different wind and river discharge forcing [J]. Journal of Tropical Oceanography, 2019, 38(3): 22-31. |
[12] | Weikang ZHAN,Jie WU,Xing WEI,Shilin TANG,Haigang ZHAN. Quantile trend analysis for suspended sediment concentration in the Pearl River Estuary based on remote sensing [J]. Journal of Tropical Oceanography, 2019, 38(3): 32-42. |
[13] | Chuang XU,Yongji XU,Jiatang HU,Shiyu LI,Jintao LIU. Study on the seasonal and interannual variability of river plume in the Pearl River Estuary based on a high-resolution ocean dynamic model [J]. Journal of Tropical Oceanography, 2019, 38(3): 43-52. |
[14] | Wenxi CAO, Zhaohua SUN, Cai LI, Guowang ZOU. Design and application of data collecting system and data receiving system for water quality monitoring buoy [J]. Journal of Tropical Oceanography, 2018, 37(5): 1-6. |
[15] | Wenxi CAO, Zhaohua SUN, Cai LI, Guowang ZOU. Biofouling protection for water quality monitoring buoy and sensors [J]. Journal of Tropical Oceanography, 2018, 37(5): 7-12. |
|