[1] |
蔡国军, 刘松玉, 童立元, 等, 2007. 多功能孔压静力触探(CPTU)试验研究[J]. 工程勘察, 35(3): 10-15, 73.
|
|
CAI GUOJUN, LIU SONGYU, TONG LIYUAN, et al, 2007. Research on the versatile piezocone penetration test (CPTU)[J]. Geotechnical Investigation & Surveying, 35(3): 10-15, 73 (in Chinese with English abstract).
|
[2] |
董济涵, 王长虹, 2023. 压缩模量融合CPT数据的贝叶斯空间插值方法[J]. 上海大学学报(自然科学版), 29(1): 140-154.
|
|
DONG JIHAN, WANG CHANGHONG, 2023. Bayesian spatial interpolation method for compression modulus fusion of CPT data[J]. Journal of Shanghai University (Natural Science Edition), 29(1): 140-154 (in Chinese with English abstract).
|
[3] |
郭根发, 2022. 海床式静力触探在海上风电项目勘察中的应用[J]. 吉林水利, (12): 8-13, 17.
|
|
GUO GENFA, 2022. Application of seabed static penetration in the investigation of offshore wind power projects[J]. Jilin Water Resources, (12): 8-13, 17 (in Chinese with English abstract).
|
[4] |
胡博锐, 刘宏扬, 蔡春麟, 等, 2022. 海洋工程地震在海上风电场工程地质勘察中的应用[J]. 海洋地质前沿, 38(9): 97-100.
|
|
HU BORUI, LIU HONGYANG, CAI CHUNLIN, et al, 2022. Application of marine engineering seismic in engineering geological investigation of offshore wind power[J]. Marine Geology Frontiers, 38(9): 97-100 (in Chinese with English abstract).
|
[5] |
蒋水华, 冯泽文, 刘贤, 等, 2020. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 41(1): 325-335.
|
|
JIANG SHUIHUA, FENG ZEWEN, LIU XIAN, et al, 2020. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 41(1): 325-335 (in Chinese with English abstract).
|
[6] |
姜贞强, 郇彩云, 王胜利, 等, 2020. 海上风电单桩基础动力特性识别及现场测试[J]. 太阳能学报, 41(7): 321-326.
|
|
JIANG ZHENQIANG, HUAN CAIYUN, WANG SHENGLI, et al, 2020. Dynamic characteristics identification of monopile offshore wind turbine and field tests[J]. Acta Energiae Solaris Sinica, 41(7): 321-326.
|
[7] |
李新, 程国栋, 卢玲, 2000. 空间内插方法比较[J]. 地球科学进展, 15(3): 260-265.
|
|
LI XIN, CHENG GUODONG, LU LING, 2000. Comparison of spatial interpolation methods[J]. Advance in Earth Sciences, 15(3): 260-265 (in Chinese with English abstract).
|
[8] |
李铮, 郭小江, 申旭辉, 等, 2022. 我国海上风电发展关键技术综述[J]. 发电技术, 43(2): 186-197.
|
|
LI ZHENG, GUO XIAOJIANG, SHEN XUHUI, et al, 2022. Summary of technologies for the development of offshore wind power industry in China[J]. Power Generation Technology, 43(2): 186-197 (in Chinese with English abstract).
|
[9] |
梁文成, 林吉兆, 杜宇, 2013. 海床式静力触探设备在海上工程勘察中的应用[J]. 水运工程, (7): 19-21.
|
|
LIANG WENCHENG, LIN JIZHAO, DU YU, 2013. Application of seabed CPTU equipment in offshore investigation[J]. Port & Waterway Engineering, (7): 19-21 (in Chinese with English abstract).
|
[10] |
刘吉臻, 马利飞, 王庆华, 等, 2021. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 23(1): 149-159.
|
|
LIU JIZHEN, MA LIFEI, WANG QINGHUA, et al, 2021. Offshore wind power supports China’s energy transition[J]. Strategic Study of CAE, 23(1): 149-159 (in Chinese with English abstract).
|
[11] |
刘乐军, 李培英, 杜军, 等, 2004. 莺歌海油气资源开发区工程地质和灾害地质特征[J]. 海洋科学进展, 22(4): 455-464.
|
|
LIU LEJUN, LI PEIYING, DU JUN, et al, 2004. Characteristics of marine engineering geology and hazardous geology in the Yinggehai oil and gas resource development area[J]. Advances in Marine Science, 22(4): 455-464 (in Chinese with English abstract).
|
[12] |
刘彦华, 杨晓军, 袁超, 等, 2019. 海洋物探方法在海上风电场勘察中的应用[J]. 地质学刊, 43(4): 619-626.
|
|
LIU YANHUA, YANG XIAOJUN, YUAN CHAO, et al, 2019. Application of marine geophysical exploration method in offshore wind farm survey[J]. Journal of Geology, 43(4): 619-626 (in Chinese with English abstract).
|
[13] |
孟祥梅, 阚光明, 李官保, 等, 2015. 南黄海中西部海底空间沉积特征及工程地质特性[J]. 工程地质学报, 23(6): 1202-1210.
|
|
MENG XIANGMEI, KAN GUANGMING, LI GUANBAO, et al, 2015. Spatial characteristics and geotechnical properties of seafloor sediment in west-central area of southern Yellow Sea[J]. Journal of Engineering Geology, 23(6): 1202-1210 (in Chinese with English abstract).
|
[14] |
牛海峰, 李向辉, 梁峰, 等, 2023. 面向海上风电开发建设的工程地质模型及应用研究[J]. 南方能源建设, 10(4): 57-70.
|
|
NIU HAIFENG, LI XIANGHUI, LIANG FENG, et al, 2023. Research on the engineering geological model and its application for offshore wind power development and construction[J]. Southern Energy Construction, 10(4): 57-70 (in Chinese with English abstract).
|
[15] |
宋伟业, 刘灵玥, 阎洁, 等, 2023. 基于深度强化学习的海上风电集群自进化功率平滑控制方法[J]. 中国电力, 56(3): 36-46.
|
|
SONG WEIYE, LIU LINGYUE, YAN JIE, et al, 2023. Self-evolving power smooth control method for offshore wind power cluster based on deep reinforcement learning[J]. Electric Power, 56(3): 36-46 (in Chinese with English abstract).
|
[16] |
唐丙寅, 吴冲龙, 李新川, 等, 2015. 一种基于钻孔地质数据的快速递进三维地质建模方法[J]. 岩土力学, 36(12): 3633-3638.
|
|
TANG BINGYIN, WU CHONGLONG, LI XINCHUAN, et al, 2015. A fast progressive 3D geological modeling method based on borehole data[J]. Rock and Soil Mechanics, 36(12): 3633-3638 (in Chinese with English abstract).
|
[17] |
田密, 李典庆, 曹子君, 等, 2017. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 38(11): 3355-3362.
|
|
TIAN MI, LI DIANQING, CAO ZIJUN, et al, 2017. Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 38(11): 3355-3362 (in Chinese with English abstract).
|
[18] |
王博斐, 肖浩哲, 李国豪, 等, 2023. 基于控制目标的氢-电混动系统能量管理策略综述[J]. 发电技术, 44(4): 452-464.
|
|
WANG BOFEI, XIAO HAOZHE, LI GUOHAO, et al, 2023. A review of energy management strategy for hydrogen-electricity hybrid power system based on control target[J]. Power Generation Technology, 44(4): 452-464 (in Chinese with English abstract).
|
[19] |
王长虹, 黄梦露, 2018. 岩土参数转换模型的贝叶斯校准方法[J]. 自然灾害学报, 27(4): 96-102.
|
|
WANG CHANGHONG, HUANG MENGLU, 2018. Transformation model for geotechnical parameters calibration based on Bayesian approach[J]. Journal of Natural Disasters, 27(4): 96-102 (in Chinese with English abstract).
|
[20] |
薛明军, 陈福锋, 杨林刚, 等, 2023. 海上风电交流送出线路继电保护优化设计[J]. 电力系统保护与控制, 51(20): 150-159.
|
|
XUE MINGJUN, CHEN FUFENG, YANG LINGANG, et al, 2023. Optimized design of relay protection for an offshore wind power outgoing transmission line[J]. Power System Protection and Control, 51(20): 150-159 (in Chinese with English abstract).
|
[21] |
严新荣, 张宁宁, 马奎超, 等, 2024. 我国海上风电发展现状与趋势综述[J]. 发电技术, 45(1): 1-12.
|
|
YAN XINRONG, ZHANG NINGNING, MA KUICHAO, et al, 2024. Overview of current situation and trend of offshore wind power development in China[J]. Power Generation Technology, 45(1): 1-12 (in Chinese with English abstract).
|
[22] |
阳熹, 汤翔, 李炬添, 等, 2023. 海上风电低频主变压器特性分析及技术展望[J]. 南方能源建设, 10(5): 139-148.
|
|
YANG XI, TANG XIANG, LI JUTIAN, et al, 2023. Characteristics analysis and technical prospect of low-frequency main transformer for offshore wind power[J]. Southern Energy Construction, 10(5): 139-148 (in Chinese with English abstract).
|
[23] |
赵君宇, 高山, 徐路, 等, 2023. 考虑台风影响的海上风电机组双层检修策略[J]. 电力建设, 44(7): 121-130.
|
|
ZHAO JUNYU, GAO SHAN, XU LU, et al, 2023. Double-layer maintenance strategy for offshore wind turbines considering impact of typhoon[J]. Electric Power Construction, 44(7): 121-130 (in Chinese with English abstract).
|
[24] |
BREIMAN L, 2001. Random Forests[J]. Machine learning, 45(1): 5-32.
|
[25] |
COSTA I S L, TAVARES F, DE OLIVEIRA J K M, et al, 2019. Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil[J]. Journal of the Geological Survey of Brazil, 2(1): 26-36.
|
[26] |
MORGENSTERN N R, CRUDEN D, ANONYMOUS, 1978. Description and classification of the types of complexities and relative geotechnical models[C]// International symposium on the geotechnics of structurally complex formations. Milan: Associazione Geotecnica Italiana: 195-203.
|
[27] |
OH K Y, NAM W, RYU M S, et al, 2018. A review of foundations of offshore wind energy convertors: Current status and future perspectives[J]. Renewable and Sustainable Energy Reviews, 88: 16-36.
|
[28] |
ROBERTSON P K, 1990. Soil classification using the cone penetration test[J]. Canadian Geotechnical Journal, 27(1): 151-158.
|
[29] |
ZHAO TAO, DI HAIBIN, ABUBAKAR A, 2024. Evaluating machine learning-predicted subsurface properties via seismic data reconstruction[J]. Geophysics, 89(6): 509-519.
|