热带海洋学报 ›› 2022, Vol. 41 ›› Issue (6): 75-89.doi: 10.11978/2021114CSTR: 32234.14.2021114
叶锦成1,2(), 陈毅青3, 高琳1, 周鲜娇1, 钟才荣3, 张颖1, 王芸1(
)
收稿日期:
2021-08-30
修回日期:
2021-10-11
出版日期:
2022-11-10
发布日期:
2021-10-13
通讯作者:
王芸
作者简介:
叶锦成(1997—), 男, 广东省云浮罗定市人。email: ckamyer@163.com
基金资助:
YE Jincheng1,2(), CHEN Yiqing3, GAO Lin1, ZHOU Xianjiao1, ZHONG Cairong3, ZHANG Ying1, WANG Yun1(
)
Received:
2021-08-30
Revised:
2021-10-11
Online:
2022-11-10
Published:
2021-10-13
Contact:
WANG Yun
Supported by:
摘要:
植物根际微生物群落能够从亲本传递给子代, 从而影响植物的表型。野外调查发现, 海桑属(Sonneratia)红树植物自然杂交杂种拟海桑在野外通常比亲本生长更为强壮, 表现出极强的生存优势。为探究这一现象的原因, 本研究从根际微生物角度出发, 利用细菌16S rRNA基因高通量测序技术, 对采自海南省东寨港的三种红树植物拟海桑(S. × gulngai)及其亲本海桑(S. caseolaris)和杯萼海桑(S. alba)的根际土壤进行根际细菌群落特征分析。结果表明, 三种红树植物根际细菌群落多样性高, 种类丰富, 分属于30门242科351属, 其中变形菌门(Proteobacteria)为最优势门, 在各个样本中丰度超过40%, 子代拟海桑继承亲本的根际微生物多数都属于这一类群。研究发现, 子代拟海桑与两亲本的根际细菌类群组成在门水平存在显著差异, 其中酸杆菌门(Acidobacteria)和放线菌门(Actinobacteria)在子代拟海桑中丰度分别为4.3%和6.5%, 显著高于亲本1%~2%的含量; 在亲本杯萼海桑中, 丰度高达19.8%的栖热菌门(Thermi)在子代中丰度仅有1%, 而热袍菌门(Thermotogae)(5%)甚至消失。总之, 子代拟海桑与亲本杯萼海桑的根际微生物群落组成相对于亲本海桑表现出更大的差异性。土壤理化性质分析发现, 子代拟海桑的土壤全氮(total nitrogen, TN)含量显著低于亲本, 含量相差3倍以上, 相关性分析表明, TN浓度与菌群中的浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)丰度显著负相关。通过功能预测分析发现, 子代拟海桑微生物群落中与基础代谢相关的碳水化合物、氨基酸、能量以及脂质代谢相关的功能基因丰度显著都高于亲本, 表现出代谢能力的增强。本研究认为, 子代拟海桑对亲本的根际土壤微生物进行了选择性继承, 菌群组成更为合理, 在保持菌群高度多样性的同时, 一些根际促生菌的含量增加, 使菌群基础代谢能力增加, 更有利于子代拟海桑的生长。
中图分类号:
叶锦成, 陈毅青, 高琳, 周鲜娇, 钟才荣, 张颖, 王芸. 红树植物拟海桑及其亲本的根际细菌群落特征分析[J]. 热带海洋学报, 2022, 41(6): 75-89.
YE Jincheng, CHEN Yiqing, GAO Lin, ZHOU Xianjiao, ZHONG Cairong, ZHANG Ying, WANG Yun. Analysis of rhizosphere bacterial community characteristics of mangrove plant Sonneratia × gulngai and its parents[J]. Journal of Tropical Oceanography, 2022, 41(6): 75-89.
表3
土壤样品的理化性质(平均值±标准误差)和ANOVA显著性分析、Duncan检验多重比较结果"
理化指标 | 样品 | ||
---|---|---|---|
Sc | Sg | Sal | |
TC/(mg.g-1) | 24.33±2.07a | 13.17±0.60b | 15.60±2.30b |
TN/(mg.g-1) | 4.33±0.06b | 1.21±0.05c | 4.64±0.04a |
TP/(mg.g-1) | 0.34±0.02b | 0.72±0.04a | 0.67±0.03a |
AK/(mg.g-1) | 0.51±0.01b | 0.34±0.02c | 0.67±0.01a |
C/N | 5.62±0.52b | 10.82±0.13a | 3.36±0.52c |
N/P | 12.45±0.67a | 1.68±0.03c | 6.93±0.24b |
表4
土壤理化性质与门水平主要细菌的相关性"
细菌门 | 中文名 | TC | TN | TP | AK | C/N | N/P |
---|---|---|---|---|---|---|---|
Proteobacteria | 变形菌门 | -0.817** | 0.217 | 0.700* | 0.159 | -0.283 | -0.667* |
Chloroflexi | 绿弯菌门 | 0.433 | -0.467 | -0.517 | -0.402 | 0.433 | 0.467 |
Planctomycetes | 浮霉菌门 | -0.417 | -0.917** | 0.333 | -0.854** | 0.883** | -0.433 |
Bacteroidetes | 拟杆菌门 | -0.233 | 0.65 | -0.05 | 0.678* | -0.817** | 0.1 |
Chlorobi | 绿菌门 | 0.35 | 0.967** | -0.267 | 0.879** | -0.933** | 0.383 |
Gemmatimonadetes | 出芽单胞菌门 | 0.1 | -0.5 | 0.083 | -0.770* | 0.6 | -0.1 |
WS3 | 0.417 | -0.483 | -0.533 | -0.418 | 0.417 | 0.483 | |
Spirochaetes | 螺旋体门 | 0.433 | -0.383 | -0.55 | -0.385 | 0.35 | 0.533 |
Acidobacteria | 酸杆菌门 | -0.433 | -0.933** | 0.3 | -0.879** | 0.850** | -0.417 |
Firmicutes | 厚壁菌门 | -0.117 | 0.717* | 0.4 | 0.527 | -0.533 | -0.267 |
Actinobacteria | 放线菌门 | -0.45 | -0.867** | 0.383 | -0.904** | 0.800** | -0.483 |
Thermi | 栖热菌门 | 0.317 | 0.850** | -0.433 | 0.887** | -0.917** | 0.5 |
Thermotogae | 热袍菌门 | 0.356 | 0.881** | -0.39 | 0.877** | -0.915** | 0.492 |
[1] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社: 102-130. |
Bao S D. Soil and agricultural chemistry analysis[J]. 2000. (in Chinese) | |
[2] | 曹雷雷, 田海妍, 王友绍, 等, 2015. 红树植物无瓣海桑果实的化学成分研究[J]. 热带海洋学报, 34(1): 77-82. |
CAO LEILEI, TIAN HAIYAN, WANG YOUSHAO, et al, 2015. Chemical constituents in the fruits of mangrove plant Sonneratia apetala Buch. Ham[J]. Journal of Tropical Oceanography, 34(1): 77-82. (in Chinese with English abstract) | |
[3] | 陈玉军, 廖宝文, 郑松发, 等, 2004. 无瓣海桑、海桑、秋茄红树人工林群落动态及物种多样性研究[J]. 应用生态学报, 15(6): 924-928. |
CHEN YUJUN, LIAO BAOWEN, ZHENG SONGFA, et al, 2004. Dynamics and species-diversities of artificial Sonneratia apetala, Sonneratia caseolaris and Kandelia candel communities[J]. Chinese Journal of Applied Ecology, 15(6): 924-928. (in Chinese with English abstract) | |
[4] | 高蕴璋, 1993. 中国海桑属小志[J]. 热带亚热带植物学报, 1(1): 11-13. |
KO W, 1993. Notes on some Sonneratia (Sonneratiaceae) of China[J]. Journal of Tropical and Subtropical Botany, 1(1): 11-13. (in Chinese with English abstract) | |
[5] | 黄志强, 邱景璇, 李杰, 等, 2021. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 61(5): 1044-1063. |
HUANG ZHIQIANG, QIU JINGXUAN, LI JIE, et al, 2021. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 61(5): 1044-1063. (in Chinese with English abstract) | |
[6] | 江睿, 吴云超, 陈丕茂, 2021. 珠江口淇澳岛红树林湿地沉积物碳、氮分布研究[J]. 南方水产科学, 17(1): 1-9. |
JIANG RUI, WU YUNCHAO, CHEN PIMAO, 2021. Study on distribution of sediment carbon and nitrogen in mangrove wetland of Qi'ao Island, Pearl River Estuary[J]. South China Fisheries Science, 17(1): 1-9. (in Chinese with English abstract) | |
[7] | 李海生, 2003. 中国海桑属红树植物遗传多样性研究[D]. 广州: 中山大学:11-17. |
LI HAISHENG, 2003. Study on genetic diversity of mangrove species from China in the genus Sonneratia[D]. Guangzhou: Sun Yat-sen University: 11-17. (in Chinese with English abstract) | |
[8] | 李晴晴, 徐松, 赵维, 等, 2019. 根际微生物组介导的解淀粉芽孢杆菌FH-1对水稻的促生机制[J]. 微生物学报, 59(12): 2410-2426. |
LI QINGQING, XU SONG, ZHAO WEI, et al, 2019. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice[J]. Acta Microbiologica Sinica, 59(12): 2410-2426. (in Chinese with English abstract) | |
[9] | 李诗川, 李妮亚, 刘强, 等, 2014. 海桑属红树植物离子积累、光合和抗氧化能力及相关性分析[J]. 植物资源与环境学报, 23(3): 15-23. |
LI SHICHUAN, LI NIYA, LIU QIANG, et al, 2014. Analyses on ion accumulation, photosynthetic and antioxidant capacities and their correlations of mangrove plants in Sonneratia[J]. Journal of Plant Resources and Environment, 23(3): 15-23. (in Chinese with English abstract) | |
[10] | 林婉奇, 薛立, 2020. 基于BIOLOG技术分析氮沉降和降水对土壤微生物功能多样性的影响[J]. 生态学报, 40(12): 4188-4197. |
LIN WANQI, XUE LI, 2020. Analysis of effects of nitrogen deposition and precipitation on soil microbial function diversity based on BIOLOG technique[J]. Acta Ecologica Sinica, 40(12): 4188-4197. (in Chinese with English abstract) | |
[11] | 刘京伟, 李香真, 姚敏杰, 2021. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 61(2): 231-248. |
LIU JINGWEI, LI XIANGZHEN, YAO MINJIE, 2021. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 61(2): 231-248. (in Chinese with English abstract) | |
[12] | 柳旭, 2019. 云南省三种入侵植物根际土壤细菌群落多样性研究[D]. 保定: 河北大学: 1-45. |
LIU XU, 2019. Diversity of bacterial community in rhizosphere soil of three invasive plants in Yunnan Province[D]. Baoding: Hebei University: 1-45. (in Chinese with English abstract) | |
[13] | 毛礼米, 李妮娅, 王东, 等, 2009. 海桑属6种植物花粉形态兼化石花粉指南[J]. 古生物学报, 48(2): 254-267. |
MAO LIMI, LI NIYA, WANG DONG, et al, 2009. Pollen morphology of 6 species from Sonneratia as a fossil guide[J]. Acta Palaeontologica Sinica, 48(2): 254-267. (in Chinese with English abstract) | |
[14] | 齐璐, 2019. 寒旱区城市湖泊冰封期细菌群落结构特征变化研究[D]. 包头: 内蒙古科技大学: 1-42. |
QI LU, 2019. Changes of bacterial community structure in urban lakes during ice period in cold and arid regions[D]. Baotou: Inner Mongolia University of Science & Technology: 1-42. (in Chinese with English abstract) | |
[15] | 任健, 阎冰, 洪葵, 2012. 海南东寨港红树林不同植被土壤微生物群落结构比较[J]. 微生物学报, 52(6): 736-743. |
REN JIAN, YAN BING, HONG KUI, 2012. Comparison of bacterial and archaeal community of mangrove soil under different vegetation in Dongzhaigang, Hainan Island[J]. Acta Microbiologica Sinica, 52(6): 736-743. (in Chinese with English abstract) | |
[16] | 沈芳芳, 刘影, 罗昌泰, 等, 2019. 陆地生态系统植物和土壤微生物群落多样性对全球变化的响应与适应研究进展[J]. 生态环境学报, 28(10): 2129-2140. |
SHEN FANGFANG, LIU YING, LUO CHANGTAI, et al, 2019. Research progress on response and adaptation of plant and soil microbial community diversity to global change in terrestrial ecosystem[J]. Ecology and Environmental Sciences, 28(10): 2129-2140. (in Chinese with English abstract) | |
[17] |
王光华, 刘俊杰, 于镇华, 等, 2016. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 32(2): 14-20.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.002 |
WANG GUANGHUA, LIU JUNJIE, YU ZHENHUA, et al, 2016. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 32(2): 14-20. (in Chinese with English abstract) | |
[18] | 王瑞江, 陈忠毅, 陈二英, 等, 1999. 国产海桑属植物的两个杂交种[J]. 广西植物, 19(3): 199-204. |
WANG RUIJIANG, CHEN ZHONGYI, CHEN ERYING, et al, 1999. Two hybrids of the genus Sonneratia (Sonneratiaceae) from China[J]. Guihaia 19(3): 199-204. (in Chinese with English abstract) | |
[19] | 王勇忠, 2015. 福建沿海滩涂底泥细菌群落结构和功能对生物修复的响应[D]. 厦门: 集美大学: 1-57. |
WANG YONGZHONG, 2015. Response of bacterial community structures and functions to bioremediation of mudflat sediments in Fujian coastal areas, Southeast China[D]. Xiamen: Jimei University: 1-57. (in Chinese with English abstract) | |
[20] | 吴冬梅, 2018. 长江口和东海海域细菌群落结构及其生态功能预测[D]. 舟山: 浙江海洋大学: 1-58. |
WU DONGMEI, 2018. Composition and predictive functional analysis of bacterial communities in the Changjiang Estuary and the East China Sea[D]. Zhoushan: Zhejiang Ocean University: 1-58. (in Chinese with English abstract) | |
[21] | 颜栋美, 王伟, 李蜜, 等, 2018. 茅尾海无瓣海桑根际土壤细菌多样性及抑菌活性分析[J]. 南方农业学报, 49(6): 1095-1101. |
YAN DONGMEI, WANG WEI, LI MI, et al, 2018. Diversity of rhizospheric bacteria and its inhibition activity from Sonneratia apetala in Maowei Sea[J]. Journal of Southern Agriculture, 49(6): 1095-1101. (in Chinese with English abstract) | |
[22] | 闫绍鹏, 杨瑞华, 冷淑娇, 等, 2012. 高通量测序技术及其在农业科学研究中的应用[J]. 中国农学通报, 28(30): 171-176. |
YAN SHAOPENG, YANG RUIHUA, LENG SHUJIAO, et al, 2012. High-fluxed DNA sequencing technology and its application in agricultural science research[J]. Chinese Agricultural Science Bulletin, 28(30): 171-176. (in Chinese with English abstract) | |
[23] | 袁颖红, 樊后保, 刘文飞, 等, 2013. 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 45(1): 120-128. |
YUAN YINGHONG, FAN HOUBAO, LIU WENFEI, et al, 2013. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation[J]. Soils, 45(1): 120-128. (in Chinese with English abstract) | |
[24] | 张福锁, 曹一平, 1992. 根际动态过程与植物营养[J]. 土壤学报, 29(3): 239-250. |
ZHANG FUSUO, CAO YIPING, 1992. Rhizosphere dynamics and plant nutrition[J]. Acta Pedologica Sinica, 29(3): 239-250. (in Chinese with English abstract) | |
[25] | 张起畅, 张文飞, 殷浩能, 等, 2020. 宏基因组测序分析东寨港红树林淤泥和水体微生物的多样性[J]. 基因组学与应用生物学, 39(1): 116-122. |
ZHANG QICHANG, ZHANG WENFEI, YIN HAONENG, et al, 2020. Revealing microorganism diversity of silt and water in Dongzhaigang mangroves by metagenome sequencing[J]. Genomics and Applied Biology, 39(1): 116-122. (in Chinese with English abstract) | |
[26] | 张威, 刘宁, 吕慧捷, 等, 2009. TruSpec CN元素分析仪测定土壤中碳氮方法研究[J]. 分析仪器, (3): 46-49. |
ZHANG WEI, LIU NING, LÜ HUIJIE, et al, 2009. Method for determination of carbon and nitrogen in soil by TruSpec CN elemental analyzer[J]. Analytical Instrumentation, (3): 46-49. (in Chinese with English abstract) | |
[27] | 周卫国, 丁德文, 凌娟, 等, 2019. 海草根际微生物与海草植株的互作效应[J]. 微生物学报, 59(11): 2117-2129. |
ZHOU WEIGUO, DING DEWEN, LING JUAN, et al, 2019. Seagrass-microbial interactions in the rhizosphere[J]. Acta Microbiologica Sinica, 59(11): 2117-2129. (in Chinese with English abstract) | |
[28] | 周晓光, 任鲁风, 李运涛, 等, 2010. 下一代测序技术: 技术回顾与展望[J]. 中国科学: 生命科学, 40(1): 23-37. |
ZHOU XIAOGUANG, REN LUFENG, LI YUNTAO, et al, 2010. The next-generation sequencing technology: a technology review and future perspective[J]. Science China Life Sciences, 53(1): 44-57.
doi: 10.1007/s11427-010-0023-6 pmid: 20596955 |
|
[29] | 朱丽霞, 章家恩, 刘文高, 2003. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 12(1): 102-105. |
ZHU LIXIA, ZHANG JIAEN, LIU WENGAO, 2003. Review of studies on interactions between root exudates and rhizopheric microorganisms[J]. Ecology and Environment, 12(1): 102-105. (in Chinese with English abstract) | |
[30] |
ALONGI D M, 2014. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 6: 195-219.
doi: 10.1146/annurev-marine-010213-135020 pmid: 24405426 |
[31] |
BAO YUANYUAN, DOLFING J, GUO ZHIYING, et al, 2021. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils[J]. Microbiome, 9(1): 84.
doi: 10.1186/s40168-021-01032-x |
[32] | BHARATHI P A L, OAK S, CHANDRAMOHAN D, 1991. Sulfate-reducing bacteria from mangrove swamps Ⅱ: their ecology and physiology[J]. Oceanologica Acta, 14(2): 163-171. |
[33] |
BIDDLE J F, FITZ-GIBBON S, SCHUSTER S C, et al, 2008. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10583-10588.
doi: 10.1073/pnas.0709942105 pmid: 18650394 |
[34] |
BRADLEY R L, TITUS B D, FYLES J W, 1997. Nitrogen acquisition and competitive ability of Kalmia angustifolia L., paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (Mill.) B.S.P.) seedlings grown on different humus forms[J]. Plant and Soil, 195(2): 209-220.
doi: 10.1023/A:1004263716346 |
[35] |
BRITO E M S, GUYONEAUD R, GOÑI-URRIZA M, et al, 2006. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil[J]. Research in Microbiology, 157(8): 752-762.
pmid: 16815684 |
[36] |
CHAPIN III F S, 1995. New cog in the nitrogen cycle[J]. Nature, 377(6546): 199-200.
doi: 10.1038/377199a0 |
[37] |
DAI TIANJIAO, ZHANG YAN, TANG YUSHI, et al, 2016. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay[J]. FEMS Microbiology Ecology, 92(10): fiw150.
doi: 10.1093/femsec/fiw150 |
[38] |
DENG SIWEN, CADDELL D F, XU GEN, et al, 2021. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome[J]. The ISME Journal, 15(11): 3181-3194.
doi: 10.1038/s41396-021-00993-z |
[39] |
DOMBROWSKI N, SCHLAEPPI K, AGLER M T, et al, 2017. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time[J]. The ISME Journal, 11(1): 43-55.
doi: 10.1038/ismej.2016.109 |
[40] |
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al, 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 4(5): 293-297.
doi: 10.1038/ngeo1123 |
[41] | DUKE N C, 1984. A mangrove hybrid, Sonneratia× gulngai (Sonneratiaceae) from north-eastern Australia[J]. Austrobaileya, 2(1): 103-105. |
[42] |
DUKE N C, 1994. A mangrove hybrid Sonneratia xurama (Sonneratiaceae) from northern Australia and southern New Guinea[J]. Australian Systematic Botany, 7(5): 521-526.
doi: 10.1071/SB9940521 |
[43] |
DUKE N C, MEYNECKE J O, DITTMANN S, et al, 2007. A world without mangroves?[J]. Science, 317(5834): 41-42.
pmid: 17615322 |
[44] |
EDGAR R C, 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772 |
[45] | EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al, 2015. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(8): E911-E920. |
[46] |
FENG XIAO, XU SHAOHUA, LI JIANFANG, et al, 2020. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba[J]. BMC Plant Biology, 20(1): 178.
doi: 10.1186/s12870-020-02395-3 |
[47] |
GALAND P E, CASAMAYOR E O, KIRCHMAN D L, et al, 2009. Ecology of the rare microbial biosphere of the Arctic Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22427-22432.
doi: 10.1073/pnas.0908284106 pmid: 20018741 |
[48] |
GIRI C, OCHIENG E, TIESZEN L L, et al, 2011. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 20(1): 154-159.
doi: 10.1111/j.1466-8238.2010.00584.x |
[49] |
HAMADY M, LOZUPONE C, KNIGHT R, 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data[J]. The ISME Journal, 4(1): 17-27.
doi: 10.1038/ismej.2009.97 |
[50] |
JIANG XIAOTAO, PENG XIN, DENG GUANHUA, et al, 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial Ecology, 66(1): 96-104.
doi: 10.1007/s00248-013-0238-8 |
[51] |
JING XIN, SANDERS N J, SHI YU, et al, 2015. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate[J]. Nature Communications, 6: 8159.
doi: 10.1038/ncomms9159 |
[52] |
KALAM S, BASU A, AHMAD I, et al, 2020. Recent understanding of soil Acidobacteria and their ecological significance: a critical review[J]. Frontiers in Microbiology, 11: 580024.
doi: 10.3389/fmicb.2020.580024 |
[53] |
LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al, 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 31(9): 814-821.
doi: 10.1038/nbt.2676 pmid: 23975157 |
[54] |
LI MENGSHA, GUO RUI, YU FEI, et al, 2018. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21[J]. International Journal of Molecular Sciences, 19(2): 443.
doi: 10.3390/ijms19020443 |
[55] |
LI QUAN, SONG XINZHANG, GU HONGHAO, et al, 2016. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations[J]. Scientific Reports, 6: 28235.
doi: 10.1038/srep28235 pmid: 27302857 |
[56] |
LU GUANRU, XIE BAOHUA, CAGLE G A, et al, 2021. Effects of simulated nitrogen deposition on soil microbial community diversity in coastal wetland of the Yellow River Delta[J]. Science of the Total Environment, 757: 143825.
doi: 10.1016/j.scitotenv.2020.143825 |
[57] |
LU TAO, KE MINGJING, LAVOIE M, et al, 2018. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome, 6(1): 231.
doi: 10.1186/s40168-018-0615-0 pmid: 30587246 |
[58] |
LUIS P, SAINT-GENIS G, VALLON L, et al, 2019. Contrasted ecological niches shape fungal and prokaryotic community structure in mangroves sediments[J]. Environmental Microbiology, 21(4): 1407-1424.
doi: 10.1111/1462-2920.14571 pmid: 30807675 |
[59] |
MARGULIES M, EGHOLM M, ALTMAN W E, et al, 2005. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 437(7057): 376-380.
doi: 10.1038/nature03959 |
[60] | MULLER J, HOU-LIU S Y, 1966. Hybrids and chromosomes in the genus sonneratia (Sonneratiaceae)[J]. Blumea: Biodiversity, Evolution and Biogeography of Plants, 14(2): 337-343. |
[61] |
MUWAWA E M, OBIEZE C C, MAKONDE H M, et al, 2021. 16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya[J]. PLoS One, 16(3): e0248485.
doi: 10.1371/journal.pone.0248485 |
[62] |
NAYLOR D, DEGRAAF S, PURDOM E, et al, 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME Journal, 11(12): 2691-2704.
doi: 10.1038/ismej.2017.118 |
[63] | OKSANEN J, KINDT R, LEGENDRE P, et al, 2007. The vegan package[J]. Community Ecology Package, 10: 631-637. |
[64] |
PEDRÓS-ALIÓ C, 2007. Dipping into the rare biosphere[J]. Science, 315(5809): 192-193.
doi: 10.1126/science.1135933 |
[65] |
PEIFFER J A, SPOR A, KOREN O, et al, 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(16): 6548-6553.
doi: 10.1073/pnas.1302837110 pmid: 23576752 |
[66] |
POLIDORO B A, CARPENTER K E, COLLINS L, et al, 2010. The loss of species: mangrove extinction risk and geographic areas of global concern[J]. PLoS One, 5(4): e10095.
doi: 10.1371/journal.pone.0010095 |
[67] |
QUAIL M A, KOZAREWA I, SMITH F, et al, 2008. A large genome center's improvements to the Illumina sequencing system[J]. Nature Methods, 5(12): 1005-1010.
doi: 10.1038/nmeth.1270 pmid: 19034268 |
[68] |
REN HAI, LU HONGFANG, SHEN WEIJUN, et al, 2009. Sonneratia apetala Buch.Ham in the mangrove ecosystems of China: an invasive species or restoration species?[J]. Ecological Engineering, 35(8): 1243-1248.
doi: 10.1016/j.ecoleng.2009.05.008 |
[69] |
REN HAI, CHEN HUA, LI ZHI’AN, et al, 2010. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China[J]. Plant and Soil, 327(1-2): 279-291.
doi: 10.1007/s11104-009-0053-7 |
[70] |
SALEEM M, LAW A D, SAHIB M R, et al, 2018. Impact of root system architecture on rhizosphere and root microbiome[J]. Rhizosphere, 6: 47-51.
doi: 10.1016/j.rhisph.2018.02.003 |
[71] | SCHLAEPPI K, DOMBROWSKI N, OTER R G, et al, 2014. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(2): 585-592. |
[72] | SOGIN M L, MORRISON H G, HUBER J A, et al, 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(32): 12115-12120. |
[73] |
TIAN Y, LIU H J, ZHENG T L, et al, 2008. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China[J]. Marine Pollution Bulletin, 57(6-12): 707-715.
doi: 10.1016/j.marpolbul.2008.03.011 pmid: 18439626 |
[74] |
VAN DIEPEN L T A, LILLESKOV E A, PREGITZER K S, et al, 2010. Simulated nitrogen deposition causes a decline of intra-and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests[J]. Ecosystems, 13(5): 683-695.
doi: 10.1007/s10021-010-9347-0 |
[75] |
WAGNER M R, 2021. Prioritizing host phenotype to understand microbiome heritability in plants[J]. New Phytologist, 232(2): 502-509.
doi: 10.1111/nph.17622 pmid: 34287929 |
[76] |
WANG YUTAO, YANG ZHONGYI, et al, 2010. Arbuscular mycorrhizal fungi in two mangroves in South China[J]. Plant and Soil, 331(1-2): 181-191.
doi: 10.1007/s11104-009-0244-2 |
[77] |
YANG Q, LEI A P, LI F L, et al, 2014. Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China[J]. Marine Pollution Bulletin, 85(2): 754-763.
doi: 10.1016/j.marpolbul.2014.02.024 |
[78] |
YATSUNENKO T, REY F E, MANARY M J, et al, 2012. Human gut microbiome viewed across age and geography[J]. Nature, 486(7402): 222-227.
doi: 10.1038/nature11053 |
[79] |
YU CHENXI, FENG JIANXIANG, LIU KAI, et al, 2020. Changes of ecosystem carbon stock following the plantation of exotic mangrove Sonneratia apetala in Qi'ao Island, China[J]. Science of the Total Environment, 717: 137142.
doi: 10.1016/j.scitotenv.2020.137142 |
[80] |
ZHALNINA K, LOUIE K B, HAO ZHAO, et al, 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 3(4): 470-480.
doi: 10.1038/s41564-018-0129-3 pmid: 29556109 |
[81] |
ZHANG CHAO, GAO ZHENG, SHI WENCONG, et al, 2020. Material conversion, microbial community composition and metabolic functional succession during green soybean hull composting[J]. Bioresource Technology, 316: 123823.
doi: 10.1016/j.biortech.2020.123823 |
[82] |
ZHONG CAIRONG, LI DONGLIN, ZHANG YING, 2020. Description of a new natural Sonneratia hybrid from Hainan Island, China[J]. PhytoKeys, 154: 1-9.
doi: 10.3897/phytokeys.154.53223 |
[83] |
ZHOU HONGWEI, WONG A H Y, YU R M K, et al, 2009. Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment[J]. Microbial Ecology, 58(1): 153-160.
doi: 10.1007/s00248-008-9456-x pmid: 18958515 |
[1] | 饶义勇, 赵美榕, 旷泽行, 黄洪辉, 谭萼辉. 浮筏式牡蛎养殖对大型底栖动物群落功能结构的影响——以大鹏澳为例*[J]. 热带海洋学报, 2024, 43(5): 69-83. |
[2] | 安凡, 姜悦, 王宇, 曹广萍, 高程海, 刘永宏, 易湘茜, 白猛. 红树老鼠簕内生真菌Aspergillus terreus GXIMD 03158次级代谢产物研究[J]. 热带海洋学报, 2024, 43(5): 41-48. |
[3] | 刘炜炜, 温少薇, 谭烨辉. 海水养殖水域纤毛虫多样性及其生态效应研究进展[J]. 热带海洋学报, 2024, 43(4): 1-19. |
[4] | 吴鸿博, 罗锋, 陈治澎, 朱飞, 曾靖伟, 张弛, 李瑞杰. 红树林生态重建效果预测研究新模式[J]. 热带海洋学报, 2024, 43(4): 86-97. |
[5] | 郑法, 黄福林, 陈泽恒, 丁伟品. 基于LUCC和景观格局变化的广西山口红树林湿地动态研究[J]. 热带海洋学报, 2024, 43(4): 165-173. |
[6] | 胡思敏, 周天成, 张琛, 刘胜, 李涛, 黄晖. 悬浮物对三亚珊瑚礁区浮游动物群落结构及其摄食的影响[J]. 热带海洋学报, 2024, 43(3): 122-130. |
[7] | 许莉佳, 廖芝衡, 陈辉, 王永智, 黄柏强, 林巧云, 甘健锋, 杨静. 南海北部珊瑚群落结构特征及其对海洋热浪事件的响应[J]. 热带海洋学报, 2024, 43(3): 58-71. |
[8] | 周治刚, 岳文, 李辉权, 林阳阳. 树种类型和潮滩高程对广东湛江高桥红树林碳储量的影响[J]. 热带海洋学报, 2024, 43(2): 108-120. |
[9] | 陈俊强, 汪文博, 王庆, 杨宇峰. 广西涠洲岛蛭态轮虫物种多样性及生境偏好研究[J]. 热带海洋学报, 2024, 43(2): 81-91. |
[10] | 申键, 简焯锴, 欧阳雪敏, 艾彬. 结合潮位校正的雷州半岛红树林湿地动态变迁遥感监测[J]. 热带海洋学报, 2024, 43(1): 137-153. |
[11] | 耿婉璐, 邢永泽, 张秋丰, 管卫兵. 广西北海红树林宜林滩涂大型底栖动物群落结构特征[J]. 热带海洋学报, 2024, 43(1): 107-115. |
[12] | 黄谕, 王琳, 麦志茂, 李洁, 张偲. 南海热带岛礁生物土壤结皮中细菌的分离及其固砂特性初步研究[J]. 热带海洋学报, 2023, 42(6): 101-110. |
[13] | 董俊德, 黄小芳, 龙爱民, 王友绍, 凌娟, 杨清松. 红树林固氮微生物及其生态功能研究进展[J]. 热带海洋学报, 2023, 42(4): 1-11. |
[14] | 梁寒峭, 陈文凤, 范益铠, 朱子冬, 马国需, 陈德力, 田婧. 红树林来源曲霉属和木霉属内生真菌次生代谢产物及活性研究进展[J]. 热带海洋学报, 2023, 42(4): 12-24. |
[15] | 邱瑾, 戴洪涛, 邢永泽, 黄大吉, 尹群健, 程德伟. 广西山口不同演替阶段红树植物叶茎根的生态化学计量特征*[J]. 热带海洋学报, 2023, 42(3): 149-157. |
|