热带海洋学报

• • 上一篇    

观测揭示的南海亚中尺度过程的区域差异

臧洁1, 2 , 陈更新1 , 陈举1   

  1. 1. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301;

    2. 中国科学院大学, 北京 100049

  • 收稿日期:2025-09-03 修回日期:2025-12-10 接受日期:2026-01-19
  • 通讯作者: 陈更新
  • 基金资助:

    国家重点研发计划(2022YFC3105004)

Regional differences in submesoscale processes in the South China Sea as revealed by observations

ZANG Jie1,2, CHEN Gengxin1, CHEN Ju1   

  1. 1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;

    2. University of Chinese Academy of Sciences, Beijing 100049, China


  • Received:2025-09-03 Revised:2025-12-10 Accepted:2026-01-19
  • Supported by:

    National Key Research and Development Program of China (2022YFC3105004).

摘要: 基于南海吕宋海峡、东沙、西沙和南沙区域的9个潜标观测点数据及高分辨率MITgcm LLC4320数值模式,本文分析了南海不同区域亚中尺度过程的季节演变特征及其与大中尺度间的能量传递。结果显示,吕宋海峡区域亚中尺度活动最为显著,受复杂岛屿地形的影响,不表现明显的季节性;东沙、西沙区域在冬(12~2月)、春季(3~5月)较强,最大值分别达5×10-3m2·s-2和3.5×10-3m2·s-2;南沙区域在冬季(12~2月)较强,但较吕宋海峡区域低一个数量级且季节变化较弱;而越南东部区域的亚中尺度活动在夏秋季节较强。通过涡度均方根与混合层深度和中尺度应变率的相关性分析表明,东沙和西沙区域的亚中尺度过程受到混合层不稳定和中尺度应变率的共同调控;而吕宋海峡、南沙和越南东部区域则主要由中尺度应变率主导。此外,结合局地多尺度能量和涡度分析(MS-EVA)方法,研究刻画了南海亚中尺度过程与大尺度和中尺度过程的能量传输。结果显示,吕宋海峡区域,大尺度黑潮通过正压和斜压不稳定过程为亚中尺度过程提供能量,12月达4×10-8m3·s-3。相比吕宋海峡区域,南海其它区域能量传输强度低一个数量级。其中,越南东部区域亚中尺度动能在夏秋季逆向级串补偿大尺度动能,7月为5×10-9m3·s-3。本研究为认识南海多尺度过程相互作用提供了观测依据,为改进涡分辨率模式次网格参数化提供了重要依据。

关键词: 南海, 亚中尺度过程, 能量串级, 潜标观测, MITgcm LLC4320

Abstract: Based on data from nine mooring observation points in the South China Sea, including the Luzon Strait, Dongsha, Xisha, and Nansha regions, and the high-resolution MITgcm LLC4320 numerical model, this study analyses the seasonal evolution characteristics of submesoscale processes in different regions of the South China Sea and their energy transfer with mesoscale processes. The results show that submesoscale activity is most pronounced in the Luzon Strait region, where complex island topography prevents the emergence of distinct seasonal patterns; in the Dongsha and Xisha regions, submesoscale activity is strongest during winter (December to February) and spring (March to May), with peak values reaching 5×10-3m2·s-2 and 3.5×10-3m2·s-2, respectively; the Nansha area is stronger during winter (December to February), but is one order of magnitude lower than the Luzon Strait region and exhibits weaker seasonal variations; while the submesoscale activity in the Eastern Vietnam region is stronger during the summer and autumn seasons. Correlation analysis between the root mean square of vorticity and mixed layer depth and mesoscale strain rate indicates that submesoscale processes in the Dongsha and Xisha regions are jointly regulated by mixed layer instability and mesoscale strain rate; whereas in the Luzon Strait, Nansha, and Eastern Vietnam regions, mesoscale strain rate is the primary driver. Additionally, using the local multiscale energy and vorticity analysis (MS-EVA) method, the study characterised the energy transfer between submesoscale processes and large-scale and mesoscale processes in the South China Sea. Results show that in the Luzon Strait region, the large-scale Kuroshio Current provides energy to submesoscale processes through baroclinic and barotropic instability processes, reaching 4×10-8m3·s-3 in December. Compared to the Luzon Strait region, energy transfer intensity in other South China Sea regions is one order of magnitude lower. In the Eastern Vietnam, submesoscale kinetic energy compensates for large-scale kinetic energy through reverse-level compensation during the summer and autumn seasons, reaching 5×10-9m3·s-3 in July. This study provides observational evidence for understanding the interactions between multiscale processes in the South China Sea and offers important basis for improving subgrid parameterisation in eddy-resolution models.

Key words: South China Sea, submesoscale processes, energy cascades, mooring observations, MITgcm LLC4320