[1] |
陈长锟, 吴婷, 何若男, 等, 2020. 海洋木霉属真菌次生代谢产物活性研究进展[J]. 海峡药学, 32(9): 1-5.
|
|
CHEN CHANGKUN, WU TING, HE RUONAN, et al, 2020. Advances in the activity of secondary metabolites of marine Trichoderma fungi[J]. Strait Pharmaceutical Journal, 32(9): 1-5 (in Chinses with English abstract).
|
[2] |
邓祖军, 曹理想, VRIJMOED L P, 等, 2010. 红树林植物桐花树内生真菌类群分布的研究[J]. 热带海洋学报, 29(3): 77-81.
|
|
DENG ZUJUN, CAO LIXIANG, VRIJMOED L P, et al, 2010. Studies on distribution of fungal endophyte in mangrove plant Aegiceras corniculatum[J]. Journal of Tropical Oceanography, 29(3): 77-81 (in Chinses with English abstract).
doi: 10.11978/j.issn.1009-5470.2010.03.077
|
[3] |
高剑, 2013. 红树林内生真菌多样性及其生态分布[D]. 湛江: 广东海洋大学.
|
|
GAO JIAN, 2013. Diversity and ecological distribution of endophytic fungi associated with mangroves[D]. Zhanjiang: Guangdong Ocean University (in Chinses with English abstract).
|
[4] |
郝丽丽, 2020. 北部湾红树林老鼠簕内生真菌次级代谢产物和百香果皮化学成分及其生物活性研究[D]. 桂林: 广西师范大学.
|
|
HAO LILI, 2020. The secondary metabolites of endophytic fungi of Acanthus ilicifolius L. from Beibu Gulf, the constituents of Passiflora edulia Sims peel and their biological activities[D]. Guilin: Guangxi Normal University (in Chinses with English abstract).
|
[5] |
洪璇, 吴婷, 陈长锟, 等, 2020. 海洋曲霉属真菌抗菌活性物质的研究进展[J]. 生物资源, 42(4): 382-387.
|
|
HONG XUAN, WU TING, CHEN CHANGKUN, et al, 2020. Advances in the research of antibacterial active substances derived from marine Aspergillus fungi[J]. Biotic Resources, 42(4): 382-387 (in Chinses with English abstract).
|
[6] |
靳锦, 赵庆, 张晓梅, 等, 2018. 植物内生菌活性代谢产物最新研究进展[J]. 微生物学杂志, 38(3): 103-113.
|
|
JIN JIN, ZHAO QING, ZHANG XIAO MEI, et al, 2018. Research progress on bioactive products from endophytes[J]. Journal of Microbiology, 38(3): 103-113 (in Chinses with English abstract).
|
[7] |
李庆欣, 史雪凤, 黄智, 等, 2013. 海洋真菌来源吲哚生物碱类化合物的结构和活性研究[J]. 热带海洋学报, 32(1): 35-47.
doi: 10.11978/j.issn.1009-5470.2013.01.005
|
|
LI QINGXIN, SHI XUEFENG, HUANG ZHI, et al, 2013. Indole alkaloids from marine-derived fungi: structures and activities[J]. Journal of Tropical Oceanography, 32(1): 35-47 (in Chinses with English abstract).
|
[8] |
林鹏, 2001. 中国红树林研究进展[J]. 厦门大学学报 (自然科学版), 40(2): 592-603.
|
|
LIN PENG, 2001. A review on the mangrove research in China[J]. Journal of Xiamen University (Natural Science), 40(2): 592-603 (in Chinses with English abstract).
|
[9] |
马丽丽, 田新朋, 李桂菊, 等, 2021. 海洋微生物来源天然产物研究现状与态势[J]. 热带海洋学报, 40(5): 134-146.
doi: 10.11978/2020104
|
|
MA LILI, TIAN XINPENG, LI GUIJV, et al, 2021. Research status and development trends of natural products from marine microorganisms[J]. Journal of Tropical Oceanography, 40(5): 134-146 (in Chinses with English abstract).
doi: 10.11978/2020104
|
[10] |
王成, 张国建, 刘文典, 等, 2019. 海洋药物研究开发进展[J]. 中国海洋药物, 38(6): 35-69.
|
|
WANG CHENG, ZHANG GUOJIAN, LIU WENDIAN, et al, 2019. Recent progress in research and development of marine drugs[J]. Chinese Journal of Marine Drugs, 38(6): 35-69 (in Chinses with English abstract).
|
[11] |
王友绍, 2021. 全球气候变化对红树林生态系统的影响、挑战与机遇[J]. 热带海洋学报, 40(3): 1-14.
doi: 10.11978/YG2020006
|
|
WANG YOUSHAO, 2021. Impacts, challenges and opportunities of global climate change on mangrove ecosystems[J]. Journal of Tropical Oceanography, 40(3): 1-14 (in Chinses with English abstract).
doi: 10.11978/YG2020006
|
[12] |
杨曦亮, 任梦瑶, 刘倩, 等, 2021. 近十年海洋来源木霉属真菌次生代谢产物研究进展[J]. 广西科学, 28(5): 440-450.
|
|
YANG XILIANG, REN MENGYAO, LIU QIAN, et al, 2021. Research progress on secondary metabolites from marine-derived Trichoderma sp. in the past decade[J]. Guangxi Science, 28(5): 440-50 (in Chinses with English abstract).
|
[13] |
张敏, 2015. 红树林内生真菌Trichoderma sp. Xy24萜类代谢产物及Harzianone的微生物转化[D]. 北京: 北京中医药大学.
|
|
ZHAN MIN, 2015. Microbial transformation of terpenoid metabolites and Harzianone by endophytic fungus Trichoderma sp. Xy24 in mangrove forests[D]. Beijing: Beijing University of Chinese Medicine (in Chinses with English abstract).
|
[14] |
张娜, 傅小雪, 王文婧, 2021. 泰国红树内生真菌土曲霉xy03菌株中新杂萜类成分[J]. 菌物学报, 40(1): 222-231.
|
|
ZHANG NA, FU XIAOXUE, WANG WENJING, 2021. A new meroterpenoid from the Thai mangrove endophytic fungus Aspergillus terreus xy03.[J] Mycosystema, 40(1): 222-231 (in Chinses with English abstract).
|
[15] |
朱伟明, 王俊锋, 2011. 海洋真菌生物活性物质研究之管见[J]. 菌物学报, 30(2): 218-228.
|
|
ZHU WEIMING, WANG JUNFENG, 2011. A review on studies of secondary metabolites from marine fungi[J]. Mycosystema, 30(2): 218-228 (in Chinses with English abstract).
|
[16] |
朱琰兰, 2020. 红树内生真菌Aspergillus sp. xy14的次生代谢产物研究[D]. 广州: 南方医科大学.
|
|
ZHU YANLAN, 2020. Studies on secondary metabolites of mangrove endophyte Aspergillus sp. xy14[D]. Guangzhou: Southern Medical University (in Chinses with English abstract).
|
[17] |
BAI MENF, WANG YUE, LIU TING, et al, 2022. One new piperazinedione isolated from a mangrove-derived fungus Aspergillus niger JX-5[J]. Natural Product Research, 36(9): 2277-2283.
doi: 10.1080/14786419.2020.1828407
|
[18] |
CAI RUNLIN, JIANG HONGMING, MO YALING, et al, 2019a. Ophiobolin-Type Sesterterpenoids from the Mangrove Endophytic Fungus Aspergillus sp. ZJ-68[J]. Journal of Natural Products, 82(8): 2268-2278.
doi: 10.1021/acs.jnatprod.9b00462
|
[19] |
CAI RUNLIN, JIANG HONGMING, XIAO ZEEN, et al, 2019b. -- and +-Asperginulin A, a Pair of Indole Diketopiperazine Alkaloid Dimers with a 6/5/4/5/6 Pentacyclic Skeleton from the Mangrove Endophytic Fungus Aspergillus sp. SK-28[J]. Organic Letters, 21(23): 9633-9636.
doi: 10.1021/acs.orglett.9b03796
|
[20] |
CAI RUNLIN, JIANG HONGMING, ZANG ZHENMING, et al, 2019c. New Benzofuranoids and Phenylpropanoids from the Mangrove Endophytic Fungus, Aspergillus sp. ZJ-68[J]. Marine drugs, 17(8): 478.
doi: 10.3390/md17080478
|
[21] |
CARROLL A R, COPP B R, DAVIS R A, et al, 2022. Marine natural products[J]. Natural Product Reports, 39(6): 1122-1171.
doi: 10.1039/D1NP00076D
|
[22] |
CHEN SENHUA, CAI RUNLIN, LIU ZHAOMIN, et al, 2022. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities[J]. Natural Product Reports, 39(3): 560-595.
doi: 10.1039/D1NP00041A
|
[23] |
CUI HUI, LIU YENA, LI TINGMEI, et al, 2018. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025[J]. Fitoterapia, 124: 177-181.
doi: 10.1016/j.fitote.2017.11.006
|
[24] |
ELSBAEY M, TANAKA C, MIYAMOTO T, 2022. Allantopyrone E, a rare α-pyrone metabolite from the mangrove derived fungus Aspergillus versicolor[J]. Natural Product Research, 36(3): 760-764.
doi: 10.1080/14786419.2020.1803309
|
[25] |
GIRICH E V, RASIN A B, POPOV R S, et al, 2022. New tripeptide derivatives Asperripeptides A-C from vietnamese Mangrove-Derived fungus Aspergillus terreus LM. 5.2[J]. Marine Drugs, 20(1): 77.
doi: 10.3390/md20010077
|
[26] |
GUO HUIXIAN, HUANG CUIYING, YAN ZHANGYUAN, et al, 2020. New furo[3,2-h]isochroman from the mangrove endophytic fungus Aspergillus sp. 085242[J]. Chinese Journal of Natural Medicines, 18(11): 855-859.
doi: 10.1016/S1875-5364(20)60028-0
|
[27] |
GUO ZHIKAI, ZHOU YIQIN, HAN HAO, et al, 2018. New Antibacterial Phenone Derivatives Asperphenone A-C from Mangrove-Derived Fungus Aspergillus sp. YHZ-1[J]. Marine Drugs, 16(2): 45.
doi: 10.3390/md16020045
|
[28] |
HUMBERTO O, DANIEL T, ZULEIMA C, et al, 2021. Structurally uncommon secondary metabolites derived from endophytic fungi[J]. Journal of Fungi, 7(7): 570.
doi: 10.3390/jof7070570
|
[29] |
JIA SHULEI, CHI ZHE, LIU GUANGLEI, et al, 2020. Fungi in mangrove ecosystems and their potential applications[J]. Critical Reviews in Biotechnology, 40(6): 852-864.
doi: 10.1080/07388551.2020.1789063
|
[30] |
JIMENEZ P C, WILKE D V, BRANCO P C, et al, 2020. Enriching cancer pharmacology with drugs of marine origin[J]. British Journal of Pharmacology, 177(1): 3-27.
doi: 10.1111/bph.14876
pmid: 31621891
|
[31] |
PALIT K, RATH S, CHATTERJEE S, et al, 2022. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations[J]. Environmental Science and Pollution Research International, 29(22): 32467-32512.
doi: 10.1007/s11356-022-19048-7
|
[32] |
WANG PAN, YU JINHAI, ZHU KONGKAI, et al, 2018. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02[J]. Fitoterapia, 127: 322-327.
doi: S0367-326X(18)30101-1
pmid: 29544761
|
[33] |
WANG YUHUI, ZHONG ZHIWEI, ZHAO FEI, et al, 2021. Two new pyrone derivatives from the mangrove-derived endophytic fungus Aspergillus sydowii #2B[J]. Natural Product Research, 36(15): 3872-3877.
doi: 10.1080/14786419.2021.1892673
|
[34] |
WU YINGNAN, CHEN SENHUA, LIU HONGJU, et al, 2019. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D[J]. Archives of Pharmacal Research, 42(4): 326-331.
doi: 10.1007/s12272-018-1019-1
pmid: 29594840
|
[35] |
WU YINGNAN, CHEN YAN, HUANG XISHAN, et al, 2018. α-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from the Mangrove Endophytic Fungus Aspergillus flavus QQSG-3[J]. Marine Drugs, 16(9): 307.
doi: 10.3390/md16090307
|
[36] |
XIAO ZEEN, LIN SHAOE, SHE ZHIGANG, et al, 2021. A new anthraquinone from mangrove endophytic fungus Aspergillus sp. 16-5C[J]. Natural Product Research, 37(8): 1271-1276.
doi: 10.1080/14786419.2021.2001810
|
[37] |
YANG SUIQUN, LI XIAOMING, XU GANGMING, et al, 2018. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy[J]. The Journal of Antibiotics, 71(9): 778-784.
doi: 10.1038/s41429-018-0063-x
|
[38] |
YE GETING, HUANG CUIYING, LI JIALIN, et al, 2021. Isolation, structural characterization and antidiabetic activity of new diketopiperazine dlkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c[J]. Marine Drugs, 19(7): 402.
doi: 10.3390/md19070402
|
[39] |
ZHANG LIUHONG, NIAZ S I, KHAN D, et al, 2017a. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by Co-Cultivation with Acinetobacter johnsonii (Strain B2)[J]. Marine Drugs, 15(2): 35.
doi: 10.3390/md15020035
|
[40] |
ZHANG MIN, ZHAO JINLIAN, LIU JIMEI, et al, 2017b. Neural anti-inflammatory sesquiterpenoids from the endophytic fungus Trichoderma sp. Xy24[J]. Journal of Asian Natural Products Research, 19(7): 651-658.
doi: 10.1080/10286020.2016.1251908
|
[41] |
ZHANG WENXIU, HAO LILI, QIN XIAOYA, et al, 2023. A new lactone from mangrove endophytic fungus Aspergillus sp. GXNU-A9[J]. Natural Product Research, 37(3): 417-423.
doi: 10.1080/14786419.2021.1977298
|
[42] |
ZHAO DONGLIN, ZHANG XIFEN, HUANG UIHUAN, et al, 2022. Antifungal mafuredin and epithiodiketopiperazine derivatives from the Mangrove-derived fungus Trichoderma harzianum D13[J]. Frontiers In Microbiology, 11: 1495.
doi: 10.3389/fmicb.2020.01495
|
[43] |
ZHOU DEXIONG, ZHANG WENXIU, HAO LILI, et al, 2022. A new sesquiterpene from mangrove endophytic fungus Aspergillus sp. GXNU-MA1[J]. Natural Product Research, 36(7): 1857-1863.
doi: 10.1080/14786419.2020.1824225
|
[44] |
ZHOU GUOLIANG, CHEN XIAOHUI, ZHANG XIAOMIN, et al, 2020. Prenylated p-Terphenyls from a mangrove endophytic fungus, Aspergillus candidus LDJ-5[J]. Journal of Natural Products, 83(1): 8-13.
doi: 10.1021/acs.jnatprod.9b00004
|
[45] |
ZHOU GUOLIANG, ZHANG XIAOMIN, SHAH M, et al, 2021. Polyhydroxy p-Terphenyls from a mangrove endophytic fungus Aspergillus candidus LDJ-5[J]. Marine Drugs, 19(2): 82.
doi: 10.3390/md19020082
|