热带海洋学报 ›› 2022, Vol. 41 ›› Issue (1): 15-27.doi: 10.11978/2020156CSTR: 32234.14.2020156
洪小帆1,2,3(), 陈作志1,2(
), 张俊1,2, 江艳娥1,2, 龚玉艳1,2, 蔡研聪1,2, 杨玉滔1,2
收稿日期:
2020-12-30
修回日期:
2021-04-15
出版日期:
2022-01-10
发布日期:
2021-04-22
通讯作者:
陈作志
作者简介:
洪小帆(1996—), 男, 广东省揭阳市人, 硕士研究生, 从事海洋渔业生态研究。email: 基金资助:
HONG Xiaofan1,2,3(), CHEN Zuozhi1,2(
), ZHANG Jun1,2, JIANG Yan’e1,2, GONG Yuyan1,2, CAI Yancong1,2, YANG Yutao1,2
Received:
2020-12-30
Revised:
2021-04-15
Online:
2022-01-10
Published:
2021-04-22
Contact:
CHEN Zuozhi
Supported by:
摘要:
生态承载力评估是开展生物资源增殖放流, 维持珊瑚礁生态系统健康的基础和前提。本文基于2019年渔业资源和生态环境的综合调查数据, 构建了七连屿珊瑚礁海域生态系统的生态通道(Ecopath)模型, 分析和探讨了相关功能组增殖放流的生态承载力。结果显示, 七连屿珊瑚礁海域生态系统各功能群营养级范围为1.00~3.81; 生态系统的总能量转化效率为13.45%; 生态系统以牧食食物链占据主导地位, 直接来源于初级生产者的能流占比为57%。系统总初级生产量/总呼吸量为2.54; 总初级生产量/总生物量为19.07; 系统连接指数和系统杂食性指数分别为0.36和0.22, 表明当前七连屿珊瑚礁海域生态系统的成熟度和稳定性偏低, 系统对于外界的干扰抵抗能力较弱。在未改变七连屿珊瑚礁生态系统结构和功能的前提下, 各功能组中珊瑚、双壳类和植食性鱼类的生态承载力分别为25.09~53.77t•km-2、2.55~39.95t•km-2和4.89~17.94t•km-2, 因此仍具有较大的增殖空间。珊瑚礁鱼类群落的最大生态承载力同珊瑚礁无脊椎动物群落的增殖密切相关, 在未来的珊瑚礁渔业管理中应从生态系统整体结构的角度综合考虑增殖放流的方法设计。
中图分类号:
洪小帆, 陈作志, 张俊, 江艳娥, 龚玉艳, 蔡研聪, 杨玉滔. 基于Ecopath模型的七连屿礁栖性生物的生态承载力分析[J]. 热带海洋学报, 2022, 41(1): 15-27.
HONG Xiaofan, CHEN Zuozhi, ZHANG Jun, JIANG Yan’e, GONG Yuyan, CAI Yancong, YANG Yutao. Analysis of ecological carrying capacity of reef organisms in Qilianyu Islands based on Ecopath model[J]. Journal of Tropical Oceanography, 2022, 41(1): 15-27.
表1
七连屿珊瑚礁海域生态系统功能组及主要种类"
序号 | 功能组 | 主要组成种类 |
---|---|---|
1 | 软骨鱼类(Chondrichthyes) | 鳐(Ray)、鲨鱼(Shark)等 |
2 | 大型肉食性鱼类(Large carnivorous fish) | 绿短臂鱼(Aprion virescens)、丝鳍紫鱼(Pristipomoides filamentosus)、红叉尾鲷(Aphareus rutilans)、大型石斑鱼(Large grouper)等 |
3 | 中型肉食性鱼类(Medium carnivorous fish) | 隆头鱼科(Labridae)、裸颊鲷科(Lethrinidae)、须鲷科(Mullidae)、大眼鲷科(Priacanthidae)等 |
4 | 小型肉食性鱼类(Small carnivorous fish) | 蜂巢石斑鱼(Epinephelus merra)、九棘鲈属(Cephalopholis)、金鳞鱼科(Holocentridae)、天竺鲷科(Apogonidae)等 |
5 | 杂食性鱼类(Omnivorous fish) | 雀鲷科(Pomacentridae)、鳞鲀科(Balistidae)等 |
6 | 珊瑚食性鱼类(Coral-eating fish) | 鹦嘴鱼科(Scarinae)、蝴蝶鱼科(Chaetodontidae)等 |
7 | 植食性鱼类(Herbivorous fish) | 盖刺鱼科(Pomacanthidae)、刺尾鱼科(Acanthuridae)、蓝子鱼属(Siganus)等 |
8 | 海龟(Turtle) | 绿海龟(C. mydas)、玳瑁(Eretmochelys imbricata)、棱皮龟(Dermochelys coriacea)等 |
9 | 棘冠海星(Crown-of-thorns starfish) | 棘冠海星(A. planci) |
10 | 法螺(Giant triton) | 法螺(C. tritonis) |
11 | 其他棘皮动物(Other echinoderms) | 海星(Star fish)、海胆(Sea urchin)、海参(Sea cucumber)、海蛇尾(Brittle star)等 |
12 | 双壳类(Bivalve) | 砗磲科(Tridacninae)等 |
13 | 其他软体动物(Other mollusca) | 单板类(Monoplacophora)、腹足类(Gastropoda)等 |
14 | 甲壳类(Crustaceans) | 蟹类(Crab)、虾类(Shrimp)等 |
15 | 珊瑚(Coral) | 鹿角珊瑚属(Acropora)、杯形珊瑚属(Pocillopora)、滨珊瑚属(Porites)、菊花珊瑚属(Goniastrea)等 |
16 | 浮游动物(Zooplankton) | 桡足类(Copepods)、海樽科(Doliolum)、鱼卵(Fish spawns)等 |
17 | 小型底栖动物(Small benthic invertebrates) | 多毛类(Polychaeta)等 |
18 | 大型底栖藻类(Benthic macro-algae) | 珊瑚藻(Coralline algae) |
19 | 小型底栖藻类(Benthic micro-algae) | 草皮海藻(Turf) |
20 | 浮游植物(Phytoplankton) | 硅藻(Bacillariophyceae)、甲藻(Dinoflagellata)、金藻(Chrysophyceae)、蓝藻(Cyanobacteria)等 |
21 | 碎屑(Detritus) | 颗粒有机碳和溶解有机碳(Particulate organic carbon & Dissolved organic carbon) |
表2
模型平衡的生态学和热力学原则"
指标 | 取值范围 | 参考文献 |
---|---|---|
生态营养效率(Ecotrophic efficiency, EE) | <1 | Heymans et al, |
食物总转化效率(Gross food conversion efficiency, GE) | 0.1~0.3 | |
净效率(Net efficiency, NE) | NE-GE>0 | |
呼吸量/同化量(Respiration/Assimilation biomass, RA/AS) | <1 | |
呼吸量/生物量(Respiration/Biomass, RA/B) | 鱼类: 1~10; 高转换效率类群: 50~100 | |
生产量/呼吸量(Production/Respiration, P/RA) | <1 |
表3
七连屿珊瑚礁生态系统Ecopath模型功能组估算参数"
序号 | 功能组 | 营养级 | 生物量 /(t•km-2) | 生产量与生物量之比 /a-1 | 消耗量与生物量之比 /a-1 | 生态营养效率 | 被捕捞量 /(t•km-2•a-1) |
---|---|---|---|---|---|---|---|
1 | 软骨鱼类 | 3.81 | 0.097a | 0.25g | 4.72g | 0.189 | - |
2 | 大型肉食性鱼类 | 3.60 | 0.430 | 0.67h | 11.52 | 0.779 | 0.2 |
3 | 中型肉食性鱼类 | 3.42 | 3.781 | 0.99g | 8.50 | 0.893 | 2.5 |
4 | 小型肉食性鱼类 | 3.10 | 1.700 | 4.12i | 13.50 | 0.983 | 0.8 |
5 | 杂食性鱼类 | 2.86 | 1.103 | 4.50g | 16.30 | 0.883 | 1.8 |
6 | 珊瑚食性鱼类 | 2.69 | 1.415 | 2.20j | 15.10j | 0.945 | 0.2 |
7 | 植食性鱼类 | 2.18 | 8.156 | 3.00k | 21.50k | 0.689 | 1.5 |
8 | 海龟 | 2.81 | 0.020b | 0.14k | 3.50k | 0.878 | 0.002 |
9 | 棘冠海星 | 3.03 | 3.045 | 1.20k | 5.00k | 0.300 | - |
10 | 法螺 | 3.48 | 0.692 | 1.22b | 4.08b | 0.950b | 0.8 |
11 | 其他棘皮动物 | 2.27 | 3.035c | 2.43g | 8.15g | 0.968 | 0.5 |
12 | 双壳类 | 2.18 | 8.500b | 2.51k | 5.62k | 0.325 | 0.5 |
13 | 其他软体动物 | 2.38 | 26.500c | 2.55l | 19.20l | 0.308 | 6 |
14 | 甲壳类 | 2.46 | 4.300b | 5.65 | 28.50h | 0.947 | 0.5 |
15 | 珊瑚 | 2.26 | 35.849 | 3.00j | 10.00j | 0.700h | - |
16 | 浮游动物 | 2.01 | 3.510d | 76.00b | 253.00b | 0.902 | - |
17 | 小型底栖动物 | 2.09 | 3.911c | 12.00k | 60.00k | 0.909 | - |
18 | 大型底栖藻类 | 1.00 | 22.000e | 18.00m | - | 0.453 | - |
19 | 小型底栖藻类 | 1.00 | 30.000f | 25.00n | - | 0.312 | - |
20 | 浮游植物 | 1.00 | 8.817 | 231.00i | - | 0.395 | - |
21 | 碎屑 | 1.00 | 315.000 | - | - | 0.245 | - |
表8
七连屿珊瑚礁生态系统总特征参数表"
参数 | 数值 | 数值1 | 数值2 | 数值3 | 单位 |
---|---|---|---|---|---|
总消耗量(Sum of all consumption) | 2478.35 | 4289.81 | 4732.88 | 5376.98 | t•km-2•a-1 |
总输出量(Sum of all exports) | 2083.11 | 1254.70 | 1077.36 | 785.10 | t•km-2•a-1 |
总呼吸量(Sum of all respiratory flows) | 1251.01 | 2163.15 | 2388.91 | 2713.49 | t•km-2•a-1 |
流向碎屑总量(Sum of all flows into detritus) | 2738.82 | 2437.25 | 2337.70 | 2228.13 | t•km-2•a-1 |
系统总流量(Total system throughput, TST) | 8551.28 | 10144.91 | 10536.86 | 11103.70 | t•km-2•a-1 |
系统总生产量(Sum of all production) | 3772.67 | 4213.70 | 4303.81 | 4459.01 | t•km-2•a-1 |
总净初级生产量(Calculated total net primary production) | 3182.73 | 3182.73 | 3182.73 | 3182.73 | t•km-2•a-1 |
总初级生产量/总呼吸量(Total primary production/total respiration, TPP/TR) | 2.54 | 1.47 | 1.33 | 1.17 | 无 |
系统净生产量(Net system production) | 1931.72 | 1019.58 | 793.81 | 469.24 | t•km-2•a-1 |
总初级生产量/总生物量(Total primary production/total biomass, TPP/TB) | 19.07 | 13.93 | 12.19 | 11.18 | 无 |
总生物量/总流量(Total biomass/total throughput) | 0.02 | 0.02 | 0.02 | 0.03 | 无 |
系统连接指数(Connectance index, CI) | 0.36 | 0.36 | 0.36 | 0.36 | 无 |
系统杂食指数(System omnivory index, SOI) | 0.22 | 0.22 | 0.23 | 0.23 | 无 |
Finn循环指数(Finn's cycling index, FCI) | 3.72 | 7.10 | 7.16 | 8.48 | 无 |
Finn平均路径长度(Finn's mean path length, MPL) | 2.57 | 2.97 | 3.04 | 3.17 | 无 |
系统权势(Ascendency) | 24.34 | 19.67 | 19.21 | 18.96 | % |
系统转化效率(Total transfer efficiencies) | 13.45 | 11.41 | 12.43 | 12.08 | % |
[1] | 陈作志, 邱永松, 2010. 南海北部生态系统食物网结构、能量流动及系统特征[J]. 生态学报, 30(18): 4855-4865. |
CHEN ZUOZHI, QIU YONGSONG, 2010. Assessment of the food-web structure, energy flows, and system attribute of northern South China Sea ecosystem[J]. Acta Ecologica Sinica, 30(18): 4855-4865. (in Chinese with English abstract) | |
[2] | 董栋, 李新正, 王洪法, 等, 2015. 海南岛三亚珊瑚礁区大型底栖动物群落特征[J]. 海洋科学, 39(3): 83-91. |
LI XINZHENG, WANG HONGFA, et al, 2015. Macrobenthic community characters of coral reef at Sanya, Hainan[J]. Marine Sciences, 39(3): 83-91. (in Chinese with English abstract) | |
[3] | 洪小帆, 张俊, 江艳娥, 等, 2020. 南海西沙群岛琛航岛犬牙锥齿鲷生物学特征[J]. 生态学杂志, 39(10): 3320-3331. |
HONG XIAOFAN, ZHANG JUN, JIANG YANE, et al, 2020. Biological characteristics of Pentapodus caninus from Chenhang Island in Xisha Islands of the South China Sea[J]. Chinese Journal of Ecology, 39(10): 3320-3331. (in Chinese with English abstract) | |
[4] | 黄晖, 李秀保, 2013. 南海珊瑚生物学与珊瑚礁生态学[J]. 科学通报, 58(17): 1573. (in Chinese) |
[5] |
黄梦仪, 徐姗楠, 刘永, 等, 2019. 基于Ecopath模型的大亚湾黑鲷生态容量评估[J]. 中国水产科学, 26(1): 1-13.
doi: 10.3724/SP.J.1118.2019.18328 |
HUANG MENGYI, XU SHANNAN, LIU YONG, et al, 2019. Assessment of ecological carrying capacity of Sparus macrocephalus in Daya Bay based on an Ecopath model[J]. Journal of Fishery Sciences of China, 26(1): 1-13. (in Chinese with English abstract)
doi: 10.3724/SP.J.1118.2019.18328 |
|
[6] | 黄梓荣, 陈作志, 曾晓光, 2009. 南海北部海区软骨鱼类种类组成和资源密度分布[J]. 台湾海峡, 28(1): 38-44. |
HUANG ZIRONG, CHEN ZUOZHI, ZENG XIAOGUANG, 2009. Species composition and resources density of Chondrichthyes in the continental shelf of northern South China Sea[J]. Journal of Oceanography in Taiwan Strait, 28(1): 38-44. (in Chinese with English abstract) | |
[7] | 李元超, 吴钟解, 陈石泉, 等, 2017. 永兴岛及七连屿浅水礁区珊瑚礁鱼类多样性探讨[J]. 海洋环境科学, 36(4): 509-516. |
LI YUANCHAO, WU ZHONGJIE, CHEN SHIQUAN, et al, 2017. Discussion of the diversity of the coral reef fish in the shallow reefs along the Yongxing and Qilianyu island[J]. Marine Environmental Science, 36(4): 509-516. (in Chinese with English abstract) | |
[8] | 李元超, 梁计林, 吴钟解, 等, 2019. 长棘海星的暴发及其防治[J]. 海洋开发与管理, 36(8): 9-12. |
LI YUANCHAO, LIANG JILIN, WU ZHONGJIE, et al, 2019. Outbreak and Prevention of Acanthaster planci[J]. Ocean Development and Management, 36(8): 9-12. (in Chinese with English abstract) | |
[9] | 李媛洁, 陈作志, 张俊, 等, 2020. 西沙群岛七连屿礁栖鱼类物种和分类多样性[J]. 中国水产科学, 27(7): 815-823. |
LI YUANJIE, CHEN ZUOZHI, ZHANG JUN, et al, 2020. Species and taxonomic diversity of Qilianyu island reef fish in the Xisha Islands[J]. Journal of Fishery Sciences of China, 27(7): 815-823. (in Chinese with English abstract) | |
[10] | 刘小霞, 2017. 光照对番红砗磲生长及呼吸排泄的影响[D]. 海口: 海南大学. |
LIU XIAOXIA, 2017. Effects of light on the growth, respiration and excretion in Tridacna crocea[D]. Haikou: Hainan University. (in Chinese with English abstract) | |
[11] | 刘岩, 吴忠鑫, 杨长平, 等, 2019. 基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J]. 南方水产科学, 15(4): 19-28. |
LIU YAN, WU ZHONGXIN, YANG CHANGPING, et al, 2019. Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model[J]. South China Fisheries Science, 15(4): 19-28. (in Chinese with English abstract) | |
[12] | 罗海业, 2019. 南海中北部珊瑚礁区草皮海藻分布特征及其对石珊瑚的潜在影响[D]. 南宁: 广西大学. |
LUO HAIYE, 2019. The distribution characteristics of turf algae and its potential effect on scleractinian coral in the reefs of min-northern South China Sea[D]. Nanning: Guangxi University. (in Chinese with English abstract) | |
[13] | 孙典荣, 林昭进, 邱永松, 2005. 西沙群岛重要岛礁鱼类资源调查[J]. 中国海洋大学学报, 35(2): 225-231. |
SUN DIANRONG, LIN ZHAOJIN, QIU YONGSONG, 2005. Survey of coral reef fish resources of the Xisha Islands[J]. Periodical of Ocean University of China, 35(2): 225-231. (in Chinese with English abstract) | |
[14] | 仝龄, 1999. Ecopath──一种生态系统能量平衡评估模式[J]. 海洋水产研究, 20(2): 103-107. |
TONG LING, 1999. Ecopath model─a mass-balance modeling for ecosystem estimation[J]. Marine Fisherries Reseach, 20(2): 103-107. (in Chinese with English abstract) | |
[15] | 谢福武, 梁计林, 邢孔敏, 等, 2019. 夏季海南东、南沿岸珊瑚礁区浮游动物群落结构特征研究[J]. 海洋科学, 43(7): 87-95. |
XIE FUWU, LIANG JILIN, XING KONGMIN, et al, 2019. Characteristics of zooplankton community structure in the eastern and southern offshore coral reef areas of Hainan in summer[J]. Marine Sciences, 43(7): 87-95. (in Chinese with English abstract) | |
[16] |
徐凤山, 张均龙, 2011. 中国海典型生境双壳类软体动物多样性特点[J]. 生物多样性, 19(6): 716-722.
doi: 10.3724/SP.J.1003.2011.07158 |
XU FENGSHAN, ZHANG JUNLONG, 2011. Characteristics of bivalve diversity in typical habitats of China seas[J]. Biodiversity Science, 19(6): 716-722. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2011.07158 |
|
[17] | 张靖宇, 2015. 浅海水深多维度遥感反演融合方法研究--以南海岛礁为例[D]. 青岛: 国家海洋局第一海洋研究所. |
ZHANG JINGYU, 2015. Study on fusion models of multi-dimensional bathymetry inversion in shallow sea with remote sensing--a case study of the islands and reefs in South China Sea[D]. Qingdao: The First Institute of Oceanography. (in Chinese with English abstract) | |
[18] | 张俊, 陈作志, 董俊德, 等, 2020. 近20年南海四带笛鲷(Lutjanus kasmira)种群特征变化[J]. 海洋与湖沼, 51(1): 114-124. |
ZHANG JUN, CHEN ZUOZHI, DONG JUNDE, et al, 2020. Variation in the population characteristics of blue-striped snapper Lutjanus kasmira in the South China Sea in recent 20 years[J]. Oceanologia et Limnologia Sinica, 51(1): 114-124. (in Chinese with English abstract) | |
[19] | 张婷, 林柳, 蹇丽, 等, 2020. 西沙群岛七连屿绿海龟(Chelonia mydas)产卵场海滩垃圾调查[J]. 生态学杂志, 39(7): 2408-2415. |
ZHANG TING, LIN LIU, JIAN LI, et al, 2020. Investigation of beach debris at spawning ground of Green Sea Turtles (Chelonia mydas) at Qilianyu Islands, Northeastern Xisha Islands[J]. Chinese Journal of Ecology, 39(7): 2408-2415. (in Chinese with English abstract) | |
[20] | 周晓刚, 2012. 三沙七连屿[J]. 新东方, (5): 82. (in Chinese) |
[21] |
ABDUL W O, ADEKOYA E O, 2016. Preliminary Ecopath model of a tropical coastal estuarine ecosystem around bight of Benin, Nigeria[J]. Environmental Biology of Fishes, 99(12): 909-923.
doi: 10.1007/s10641-016-0532-7 |
[22] |
AINSWORTH C H, MUMBY P J, 2015. Coral-algal phase shifts alter fish communities and reduce fisheries production[J]. Global Change Biology, 21(1): 165-172.
doi: 10.1111/gcb.2014.21.issue-1 |
[23] |
ALBOUY C, MOUILLOT D, ROCKLIN D, et al, 2010. Simulation of the combined effects of artisanal and recreational fisheries on a Mediterranean MPA ecosystem using a trophic model[J]. Marine Ecology Progress Series, 412: 207-221.
doi: 10.3354/meps08679 |
[24] |
ARIAS-GONZÁLEZ J E, NUÑEZ-LARA E, GONZÁLEZ-SALAS C, et al, 2004. Trophic models for investigation of fishing effect on coral reef ecosystems[J]. Ecological Modelling, 172(2-4): 197-212.
doi: 10.1016/j.ecolmodel.2003.09.007 |
[25] |
BELLWOOD D R, HUGHES T P, FOLKE C, et al, 2004. Confronting the coral reef crisis[J]. Nature, 429(6994): 827-833.
doi: 10.1038/nature02691 |
[26] |
BOZEC Y-M, GASCUEL D, KULBICKI M, 2004. Trophic model of lagoonal communities in a large open atoll (Uvea, Loyalty islands, New Caledonia)[J]. Aquatic Living Resources, 17(2): 151-162.
doi: 10.1051/alr:2004024 |
[27] | BOZEC Y-M, O’FARRELL S, BRUGGEMANN J H, et al, 2016. Tradeoffs between fisheries harvest and the resilience of coral reefs[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(16): 4536-4541. |
[28] | BROWN B E, 1997. Coral bleaching: causes and consequences[J]. Coral Reefs, 16(1): S129-S138. |
[29] |
CÁCERES I, ORTIZ M, CUPUL-MAGAÑA A L, et al, 2016. Trophic models and short-term simulations for the coral reefs of Cayos Cochinos and Media Luna (Honduras): a comparative network analysis, ecosystem development, resilience, and fishery[J]. Hydrobiologia, 770(1): 209-224.
doi: 10.1007/s10750-015-2592-7 |
[30] |
CHEN ZUOZHI, XU SHANNAN, QIU YONGSONG, 2015. Using a food-web model to assess the trophic structure and energy flows in Daya Bay, China[J]. Continental Shelf Research, 111: 316-326.
doi: 10.1016/j.csr.2015.08.013 |
[31] |
CHRISTENSEN V, PAULY D, 1992. ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics[J]. Ecological Modelling, 61(3-4): 169-185.
doi: 10.1016/0304-3800(92)90016-8 |
[32] | CHRISTENSEN V, PAULY D, 1998. Changes in models of aquatic ecosystems approaching carrying capacity[J]. Ecological Applications, 8(sp1): S104-S109. |
[33] | CHRISTENSEN V, WALTERS C J, PAULY D, 2005. Ecopath with Ecosim: a user’s guide[R]. Vancouver, Canada: Fisheries Centre, University of British Columbia: 1-154. |
[34] | CHRISTENSEN V, WALTERS C J, PAULY D, et al, 2008. Ecopath with Ecosim version 6 user guide[R]. Vancouver, Canada: Fisheries Centre, University of British Columbia: 1-235. |
[35] | COURTOIS DE VICOSE G, CHOU L, 1999. Future of giant clam mariculture in Singapore: problems and potential solutions[J]. Phuket Marine Biological Center Special Publication, 20: 119-122. |
[36] | DARLING E S, D'AGATA S, 2017. Coral reefs: fishing for sustainability[J]. Current Biology, 27(2): R65-R68. |
[37] | DEVANTIER L M, DONE T J, 2007. Inferring past outbreaks of the crown-of-thorns seastar from scar patterns on coral heads[M]//ARONSON R B. Geological approaches to coral reef ecology. New York: Springer: 85-125. |
[38] |
DU JIANGUO, MAKATIPU P C, TAO L S R, et al, 2020. Comparing trophic levels estimated from a tropical marine food web using an ecosystem model and stable isotopes[J]. Estuarine, Coastal and Shelf Science, 233: 106518.
doi: 10.1016/j.ecss.2019.106518 |
[39] |
FOURRIÉRE M, ALVARADO J J, CORTÉS J, et al, 2019. Energy flow structure and role of keystone groups in shallow water environments in Isla del Coco, Costa Rica, Eastern Tropical Pacific[J]. Ecological Modelling, 396: 74-85.
doi: 10.1016/j.ecolmodel.2019.01.004 |
[40] |
FRANK K T, PETRIE B, SHACKELL N L, 2007. The ups and downs of trophic control in continental shelf ecosystems[J]. Trends in Ecology & Evolution, 22(5): 236-242.
doi: 10.1016/j.tree.2007.03.002 |
[41] | HEYMANS J J, COLL M, LIBRALATO S, et al, 2011. Ecopath theory, modeling, and application to coastal ecosystems[J]. Treatise on Estuarine and Coastal Science, 9: 93-113. |
[42] |
HEYMANS J J, COLL M, LINK J S, et al, 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management[J]. Ecological Modelling, 331: 173-184.
doi: 10.1016/j.ecolmodel.2015.12.007 |
[43] |
HUGHES T P, RODRIGUES M J, BELLWOOD D R, et al, 2007. Phase shifts, herbivory, and the resilience of coral reefs to climate change[J]. Current Biology, 17(4): 360-365.
doi: 10.1016/j.cub.2006.12.049 |
[44] |
KE ZHIXIN, TAN YEHUI, HUANG LIANGMIN, et al, 2018. Spatial distribution patterns of phytoplankton biomass and primary productivity in six coral atolls in the central South China Sea[J]. Coral Reefs, 37(3): 919-927.
doi: 10.1007/s00338-018-1717-7 |
[45] |
LIN YUIJIA, RABAOUI L, BASALI A U, et al, 2021. Long-term ecological changes in fishes and macro-invertebrates in the world's warmest coral reefs[J]. Science of the Total Environment, 750: 142254.
doi: 10.1016/j.scitotenv.2020.142254 |
[46] |
LINDEMAN R L, 1942. The trophic‐dynamic aspect of ecology[J]. Ecology, 23(4): 399-417.
doi: 10.2307/1930126 |
[47] |
LINK J S, 2010. Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: a plea for PREBAL[J]. Ecological Modelling, 221(12): 1580-1591.
doi: 10.1016/j.ecolmodel.2010.03.012 |
[48] |
LIU P-J, SHAO K-T, JAN R-Q, et al, 2009. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing[J]. Marine Environmental Research, 68(3): 106-117.
doi: 10.1016/j.marenvres.2009.04.009 |
[49] |
MCKINDSEY C W, THETMEYER H, LANDRY T, et al, 2006. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 261(2): 451-462.
doi: 10.1016/j.aquaculture.2006.06.044 |
[50] |
MORISSETTE L, HAMMILL M O, SAVENKOFF C, 2006. The trophic role of marine mammals in the northern Gulf of St. Lawrence[J]. Marine Mammal Science, 22(1): 74-103.
doi: 10.1111/j.1748-7692.2006.00007.x |
[51] | OPITZ S, 1996. Trophic interactions in Caribbean coral reefs[R]. Manila: WorldFish. |
[52] |
PALOMARES M L D, PAULY D, 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity[J]. Marine and Freshwater Research, 49(5): 447-453.
doi: 10.1071/MF98015 |
[53] |
PAULY D, 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES Journal of Marine Science, 39(2): 175-192.
doi: 10.1093/icesjms/39.2.175 |
[54] |
PAULY D, CHRISTENSEN V, DALSGAARD J, et al, 1998. Fishing down marine food webs[J]. Science, 279(5352): 860-863.
doi: 10.1126/science.279.5352.860 |
[55] |
PAULY D, CHRISTENSEN V, WALTERS C, 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES Journal of Marine Science, 57(3): 697-706.
doi: 10.1006/jmsc.2000.0726 |
[56] | PAULYA D, SORIANO-BARTZA M L, PALOMARES M L D, 1993. Improved construction, parametrization and interpretation of steady-state ecosystem models[M]// PAULYD. Trophic models of aquatic ecosystems. Manila: ICLARM Conference Proceeding: 1-13. |
[57] | PITCHER T J, BUCHARY E, TRUJILLO P M, 2002. Spatial simulations of Hong Kong’s marine ecosystem: ecological and economic forecasting with MPAs and human-made reefs[R]. Hong Kong, China: Fisheries Centre, University of British Columbia. |
[58] | POLOVINA J J, 1983. ECOPATH: a user's manual and program listings[M]. America: NOAA, National Marine Fisheries Service, Southwest Fisheries Center, Honolulu Laboratory. |
[59] | RUIZ D J, BANKS S, WOLFF M, 2016. Elucidating fishing effects in a large-predator dominated system: the case of Darwin and Wolf Islands (Galápagos)[J]. Journal of Sea Research, 107: 1-11. |
[60] | RUSSO G F, FASULO G, TOSCANO A, et al, 1990. On the presence of triton species (Charonia spp.) (Mollusca Gastropoda) in the Mediterranean Sea: ecological considerations[J]. Bollettino Malacologico, 26(5-9): 91-104. |
[61] |
WABNITZ C C C, BALAZS G, BEAVERS S, et al, 2010. Ecosystem structure and processes at Kaloko Honokōhau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience[J]. Marine Ecology Progress Series, 420: 27-44.
doi: 10.3354/meps08846 |
[62] | WALTERS C J, MARTELL S J D, CHRISTENSEN V, et al, 2008. An Ecosim model for exploring gulf of mexico ecosystem management options: implications of including Multistanza life-history models for policy predictions[J]. Bulletin of Marine Science, 83(1): 251-271. |
[63] |
XU SHANNAN, CHEN ZUOZHI, LI CHUNHOU, et al, 2011. Assessing the carrying capacity of tilapia in an intertidal mangrove-based polyculture system of Pearl River Delta, China[J]. Ecological Modelling, 222(3): 846-856.
doi: 10.1016/j.ecolmodel.2010.11.014 |
[64] |
ZHANG JUN, CHEN GUOBAO, CHEN ZUOZHI, et al, 2016. Application of hydroacoustics to investigate the distribution, diel movement, and abundance of fish on Zhubi Reef, Nansha Islands, South China Sea[J]. Chinese Journal of Oceanology and Limnology, 34(5): 964-976.
doi: 10.1007/s00343-016-5019-z |
[65] | ZHANG LÜPING, XIA JIANJUN, PENG PENGFEI, et al, 2013. Characterization of embryogenesis and early larval development in the Pacific triton, Charonia tritonis (Gastropoda: Caenogastropoda)[J]. Invertebrate Reproduction & Development, 57(3): 237-246. |
[1] | 徐超, 龙丽娟, 李莎, 袁丽, 徐晓璐. 南海及其附属岛礁海洋科学考察历史资料系统整编3. 数据共享服务及应用[J]. 热带海洋学报, 2024, 43(5): 158-165. |
[2] | 徐超, 龙丽娟, 李莎, 何云开, 袁丽, 徐晓璐. 南海及其附属岛礁海洋科学考察历史资料系统整编1. 资料整编技术及应用[J]. 热带海洋学报, 2024, 43(5): 143-149. |
[3] | 徐超, 龙丽娟, 李莎, 徐晓璐, 袁丽. 南海及其附属岛礁海洋科学考察历史资料系统整编2. 数据治理技术与应用[J]. 热带海洋学报, 2024, 43(5): 150-157. |
[4] | 柳原, 柯志新, 李开枝, 谭烨辉, 梁竣策, 周伟华. 人类活动和沿岸流影响下的粤东近海浮游动物群落特征[J]. 热带海洋学报, 2024, 43(4): 98-111. |
[5] | 莫丹杨, 宁志铭, 杨斌, 夏荣林, 刘志金. 涠洲岛珊瑚礁区沉积物硝酸盐异化还原过程对温度变化的响应[J]. 热带海洋学报, 2024, 43(4): 137-143. |
[6] | 刘玓玓, 张喜洋, 孙富林, 王明壮, 谭飞, 施祺, 王冠, 杨红强. 南海海滩岩微生物群落结构和特定菌株对其成因机制的启示*[J]. 热带海洋学报, 2024, 43(4): 112-122. |
[7] | 江绿苗, 陈天然, 赵宽, 张婷, 许莉佳. 南海北部涠洲岛边缘珊瑚礁的生物侵蚀实验研究[J]. 热带海洋学报, 2024, 43(3): 155-165. |
[8] | 贾男, 周天成, 胡思敏, 张琛, 黄晖, 刘胜. 南沙群岛海域珊瑚礁区三种寄居蟹的摄食差异比较[J]. 热带海洋学报, 2024, 43(3): 109-121. |
[9] | 彭尔曼, 姚宇, 李壮志, 许从昊. 波流共同作用下珊瑚礁海岸水动力特性数值模拟研究[J]. 热带海洋学报, 2024, 43(3): 187-194. |
[10] | 黄晖, 袁翔城, 宋严, 李颖心, 周伟华, 龙爱民. 珊瑚礁生态系统固碳过程及储碳机制研究进展*[J]. 热带海洋学报, 2024, 43(3): 13-21. |
[11] | 黄晖, 俞晓磊, 黄林韬, 江雷. 珊瑚礁生态学研究现状和展望[J]. 热带海洋学报, 2024, 43(3): 3-12. |
[12] | 高洁, 余克服, 许慎栋, 黄学勇, 陈飚, 王永刚. 西沙群岛永乐环礁礁外坡沉积物中有机碳的含量与来源分析[J]. 热带海洋学报, 2024, 43(3): 131-145. |
[13] | 张浴阳, 刘骋跃, 俞晓磊, 罗勇, 周天成, 练健生, 黄晖. 三亚凤凰岛造礁石珊瑚迁移效果研究*[J]. 热带海洋学报, 2024, 43(3): 177-186. |
[14] | 雷明凤, 余克服, 廖芝衡, 陈飚, 黄学勇, 陈小燕. 西沙群岛银屿珊瑚礁的生态快速退化及其对鱼类的影响[J]. 热带海洋学报, 2024, 43(3): 87-99. |
[15] | 许莉佳, 廖芝衡, 陈辉, 王永智, 黄柏强, 林巧云, 甘健锋, 杨静. 南海北部珊瑚群落结构特征及其对海洋热浪事件的响应[J]. 热带海洋学报, 2024, 43(3): 58-71. |
|