[1] |
蔡榕硕, 郭海峡, ABD-ELGAWAD A, 等, 2021. 全球变化背景下暖水珊瑚礁生态系统的适应性与修复研究[J]. 应用海洋学学报, 40(1): 12-25.
|
|
CAI RONGSHUO, GUO HAIXIA, ABD-ELGAWAD A, et al, 2021. A study on the adaptation and restoration of warm water coral reef ecosystem in the context of global change[J]. Journal of Applied Oceanography, 40(1): 12-25 (in Chinese with English abstract).
|
[2] |
杜明卉, 李昌达, 杨华蕾, 等, 2023. 海岸带蓝碳生态系统碳库规模与投融资机制[J]. 海洋环境科学, 42(2): 294-301.
|
|
DU MINGHUI, LI CHANGDA, YANG HUALEI, et al, 2023. Carbon pool and financing mechanism of coastal blue carbon ecosystems[J]. Marine Environmental Science, 42(2): 294-301 (in Chinese with English abstract).
|
[3] |
黄晖, 张浴阳, 黄洁英, 等, 2014. 不同移植方法对多种珊瑚移植效果的影响[C]// 2014水域生态环境修复学术研讨会论文集, 2014, 54-63,
|
|
HUANGHUI, ZHANGYUYANG, HUANGJIEYING, et al, 2014. The Effects of different methods toward coral transplantation[C]// Proceedings of the 2014 Symposium on Water Ecological Environment Restoration. 2014: 54-63 (in Chinese).
|
[4] |
黄晖, 张浴阳, 刘骋跃, 2020. 热带岛礁型海洋牧场中珊瑚礁生境与资源的修复[J]. 科技促进发展, 16(2): 225-230.
|
|
HUANG HUI, ZHANG YUYANG, LIU CHENGYUE, 2020. Coral reef habitat and resources restoration in tropical island marine ranching[J]. Science and Technology for Development, 16(2): 225-230 (in Chinese with English abstract).
|
[5] |
焦念志, 刘纪化, 石拓, 等, 2021. 实施海洋负排放践行碳中和战略[J]. 中国科学: 地球科学, 51(4): 632-643.
|
|
JIAO NIANZHI, LIU JIHUA, SHI TUO, et al, 2021. Deploying ocean negative carbon emissions to implement the carbon neutrality strategy[J]. Science China: Earth Sciences, 51(4): 632-643 (in Chinese with English abstract).
|
[6] |
焦念志, 戴民汉, 翦知湣, 等, 2022. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 67(15): 1600-1606.
|
|
JIAO NIANZHI, DAI MINHAN, JIAN ZHIMIN, et al, 2022. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 67(15): 1600-1606 (in Chinese with English abstract).
|
[7] |
李银强, 2022. 西沙群岛珊瑚藻记录之近2000万年以来的海平面变化和珊瑚礁演化过程[D]. 南宁: 广西大学.
|
|
LI YINQIANG, 2022. Sea level changes and coral reef evolutionary processes over the past 20 million years as recorded by coralline algae in the Xisha Islands[D]. Nanning: Guangxi University (in Chinese with English abstract).
|
[8] |
施祺, 赵美霞, 张乔民, 等, 2009. 海南三亚鹿回头造礁石珊瑚碳酸盐生产力的估算[J]. 科学通报, 54(10): 1471-1479.
|
|
SHI QI, ZHAO MEIXIA, ZHANG QIAOMIN, et al, 2009. Estimate of carbonate production by scleractinian corals at Luhuitou fringing reef, Sanya, China[J]. Chinese Science Bulletin, 54(4): 696-705.
|
[9] |
石拓, 郑新庆, 张涵, 等, 2021. 珊瑚礁: 减缓气候变化的潜在蓝色碳汇[J]. 中国科学院院刊, 36(3): 270-278.
|
|
SHI TUO, ZHENG XINQING, ZHANG HAN, et al, 2021. Coral reefs: potential blue carbon sinks for climate change mitigation[J]. Bulletin of Chinese Academy of Sciences, 36(3): 270-278 (in Chinese with English abstract).
|
[10] |
唐剑武, 叶属峰, 陈雪初, 等, 2018. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 48(6): 661-670.
|
|
TANG JIANWU, YE SHUFENG, CHEN XUECHU, et al. 2018. Coastal blue carbon: concept, study method, and the application to ecological restoration[J]. Science China: Earth Sciences, 61(6): 637-646.
|
[11] |
王法明, 唐剑武, 叶思源, 等, 2021. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 36(3): 241-251.
|
|
WANG FAMING, TANG JIANWU, YE SIYUAN, et al, 2021. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 36(3): 241-251 (in Chinese with English abstract).
|
[12] |
张军晓, 2022. 南海典型珊瑚礁区碳酸盐体系与钙化率研究[D]. 广州: 中国科学院研究生院(南海海洋研究所).
|
|
ZHANG JUNXIAO, 2022. Study on carbonate system and calcification rate of typical coral reef in South China Sea[D]. Guangzhou: Graduate University of the Chinese Academy of Sciences (South China Sea Institute of Oceanology) (in Chinese with English abstract).
|
[13] |
张浴阳, 刘骋跃, 王丰国, 等, 2021. 典型近岸退化珊瑚礁的成功修复案例——蜈支洲珊瑚覆盖率的恢复[J]. 应用海洋学学报, 40(1): 26-33.
|
|
ZHANG YUYANG, LIU CHENGYUE, WANG FENGGUO, et al, 2021. Successful restoration of typical degraded coastal coral reefs——a restoration of coral coverage at Wuzhizhou Island[J]. Journal of Applied Oceanography, 40(1): 26-33 (in Chinese with English abstract).
|
[14] |
郑新庆, 张涵, 陈彬, 等, 2021. 珊瑚礁生态修复效果评价指标体系研究进展[J]. 应用海洋学学报, 40(1): 126-141.
|
|
ZHENG XINQING, ZHANG HAN, CHEN BIN, et al, 2021. Advance of indicator system for the evaluation of coral reef restoration effectiveness[J]. Journal of Applied Oceanography, 40(1): 126-141 (in Chinese with English abstract).
|
[15] |
AKHAND A, WATANABE K, CHANDA A, et al, 2021. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum[J]. Science of the Total Environment, 752: 142190.
|
[16] |
ALBRIGHT R, CALDEIRA L, HOSFELT J, et al, 2016. Reversal of ocean acidification enhances net coral reef calcification[J]. Nature, 531(7594): 362-365.
|
[17] |
ATKINSON M J, 2011. Biogeochemistry of Nutrients[M]// DUBINSKYZ, STAMBLERN, Coral reefs: An ecosystem in transition. Dordrecht: Springer: 199-206.
|
[18] |
CARDINI U, BEDNARZ V N, VAN HOYTEMA N, et al, 2016. Budget of primary production and dinitrogen fixation in a highly seasonal Red Sea coral reef[J]. Ecosystems, 19(5): 771-785.
|
[19] |
CHRISTIANSON A B, CABRÉ A, BERNAL B, et al, 2022. The promise of blue carbon climate solutions: Where the science supports ocean-climate policy[J]. Frontiers in Marine Science, 9: 851448.
|
[20] |
CORNWALL C E, COMEAU S, KORNDER N A, et al, 2021. Global declines in coral reef calcium carbonate production under ocean acidification and warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(21): e2015265118.
|
[21] |
DAI MINHAN, LU ZHONGMING, ZHAI WEIDONG, et al, 2009. Diurnal variations of surface seawater pCO2 in contrasting coastal environments[J]. Limnology and Oceanography, 54(3): 735-745.
|
[22] |
DECARLO T M, COHEN A L, WONG G T F, et al, 2017. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification[J]. Journal of Geophysical Research: Oceans, 122(1): 745-761.
|
[23] |
EDDY T D, LAM V W Y, REYGONDEAU G, et al, 2021. Global decline in capacity of coral reefs to provide ecosystem services[J]. One Earth, 4(9): 1278-1285.
|
[24] |
FALTER J L, LOWE R J, ZHANG ZHENLIN, et al, 2013. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology[J]. PLoS One, 8(1): e53303
|
[25] |
FERRIER-PAGÈS C, GATTUSO J P, 1998. Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan)[J]. Microbial Ecology, 35(1): 46-57.
|
[26] |
FRANKIGNOULLE M, GATTUSO J P, 1993. Air-Sea CO2 exchange in coastal ecosystems[M]// WOLLASTR, MACKENZIEF T, CHOULEI. Interactionsof C, N,P and S biogeochemical cycles and global change. Berlin, Heidelberg: Springer: 233-248.
|
[27] |
GAO YANG, YU GUIRUI, YANG TIANTIAN, et al, 2016. New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China[J]. Earth-Science Reviews, 159: 36-46.
|
[28] |
GATTUSO J P, ALLEMAND D, FRANKIGNOULLE M, 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry[J]. American Zoologist, 39(1): 160-183.
|
[29] |
GATTUSO J P, PICHON M, DELESALLE B, et al, 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia)[J]. Marine Ecology Progress Series, 96(3): 259-267.
|
[30] |
GEST H, 2002. History of the word photosynthesis and evolution of its definition[J]. Photosynthesis Research, 73(1-3): 7-10.
|
[31] |
HAAS A F, NELSON C E, WEGLEY KELLY L, et al, 2011. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity[J]. PLoS One, 6(11): e27973.
|
[32] |
HUGHES T P, HUANG HUI, YOUNG M A L, 2013. The wicked problem of China's disappearing coral reefs[J]. Conservation Biology, 27(2): 261-269.
doi: 10.1111/j.1523-1739.2012.01957.x
pmid: 23140101
|
[33] |
IPCC, 2019. Summary for Policymakers[R/OL]. [2023-04-14]. https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_SPM.pdf
|
[34] |
KAYANNE H, SUZUKI A, SAITO H, 1995. Diurnal changes in the partial pressure of carbon dioxide in coral reef water[J]. Science, 269(5221): 214-216.
pmid: 17789850
|
[35] |
LI GANG, XU WEIHAI, LUO YUN, et al, 2023. Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea[J]. GSA Bulletin, 135(1-2): 271-285.
|
[36] |
LI QIAN, GUO XIANGHUI, ZHAI WEIDONG, et al, 2020. Partial pressure of CO2 and air-sea CO2fluxes in the South China Sea: synthesis of an 18-year dataset[J]. Progress in Oceanography 182: 102272.
|
[37] |
LONGHURST A R, HARRISON W G, 1989. The biological pump: profiles of plankton production and consumption in the upper ocean[J]. Progress in Oceanography, 22(1): 47-123.
|
[38] |
LOVELOCK C E, DUARTE C M, 2019. Dimensions of blue carbon and emerging perspectives[J]. Biology Letters, 15(3): 20180781.
|
[39] |
MACREADIE P I, ANTON A, RAVEN J A, et al, 2019. The future of blue carbon science[J]. Nature Communications, 10(1): 3998.
doi: 10.1038/s41467-019-11693-w
pmid: 31488846
|
[40] |
MACREADIE P I, COSTA M D P, ATWOOD T B, et al, 2021. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment, 2(12): 826-839.
|
[41] |
MALLON J, 2023. Quantifying the benthic metabolism of tropical coral reefs and seagrasses in a changing climate[D]. Scotland: University of Glasgow:2023-83381.
|
[42] |
MAURYA P, DAS A K, KUMARI R, 2021. Managing the blue carbon ecosystem: a remote sensing and GIS approach[M]// PANDEYP C, SHARMAL K, Advances in remote sensing for natural resource monitoring. Hoboken: John Wiley & Sons Ltd. : 247-268.
|
[43] |
MELÉNDEZ M, SALISBURY J, GLEDHILL D, et al, 2022. Net ecosystem dissolution and respiration dominate metabolic rates at two western Atlantic reef sites[J]. Limnology and Oceanography, 67(3): 527-539.
|
[44] |
NELLEMANN C, CORCORAN E, DUARTE C M, et al, 2009. Blue carbon: a rapid response assessment[R]. Nairobi, Kenya: United Nations Environment Programme.
|
[45] |
PLATZ M C, ARIAS M E, BYRNE R H, 2022. Reef metabolism monitoring methods and potential applications for coral restoration[J]. Environmental Management, 69(3): 612-625.
|
[46] |
RIX L, BEDNARZ V N, CARDINI U, et al, 2015. Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea[J]. Marine Ecology Progress Series, 533: 79-92.
|
[47] |
RINKEVICH B, 2005. Conservation of coral reefs through active restoration measures: Recent approaches and last decade progress[J]. Environmental Science & Technology, 39: 4333-4342.
|
[48] |
SILVEIRA C B, CAVALCANTI G S, WALTER J M, et al, 2017. Microbial processes driving coral reef organic carbon flow[J]. FEMS Microbiology Reviews, 41(4): 575-595.
doi: 10.1093/femsre/fux018
pmid: 28486655
|
[49] |
SPALDING M D, RAVILIOUS C, GREEN E P, 2001. World atlas of coral reefs[M]. Berkeley: University of California Press: 1-406.
|
[50] |
STEELE R E, DAVID C N, TECHNAU U, 2011. A genomic view of 500 million years of cnidarian evolution[J]. Trends in Genetics, 27(1): 7-13.
doi: 10.1016/j.tig.2010.10.002
pmid: 21047698
|
[51] |
VAN DER HEIJDEN L H, KAMENOS N A, 2015. Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial[J]. Biogeosciences, 12(21): 6429-6441.
|
[52] |
VAN HOYTEMA N, BEDNARZ V N, CARDINI U, et al, 2016. The influence of seasonality on benthic primary production in a Red Sea coral reef[J]. Marine Biology, 163(3): 52.
|
[53] |
VERON J E N, STAFFORD-SMITH M G, TURAK E, et al, 2016. Corals of the world[EB/OL]. [2023-04-14]. http://www.coralsoftheworld.org/page/home/
|
[54] |
WARE J R, SMITH S V, REAKA-KUDLA M L, 1992. Coral reefs: sources or sinks of atmospheric CO2?[J]. Coral Reefs, 11(3): 127-130.
|
[55] |
WATANABE A, NAKAMURA T, 2019. Carbon dynamics in coral reefs[M]// KUWAET, HORIM, Blue carbon in shallow coastal ecosystems. Singapore: Springer: 273-293.
|
[56] |
XU YI, ZHANG JING, HUANG HUI, et al, 2022. Coral symbiosis carbon flow: a numerical model study spanning cellular to ecosystem levels[J]. Frontiers in Marine Science, 9: 749921.
|
[57] |
YAN HONGQIANG, YU KEFU, SHI QI, et al, 2016. Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea[J]. Journal of Geophysical Research: Oceans, 121(1): 998-1008.
|
[58] |
YAN JIANFANG, WANG LEI, HU YU, et al, 2018. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma, 319: 194-203.
|
[59] |
YATES K K, HALLEY R B, 2006. $\mathrm{CO}_{3}^{2-}$ concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii[J]. Biogeosciences, 3(3): 357-369.
|
[60] |
ZHAI WEIDONG, DAI MINGHAN, CHEN BAOSHAN, et al, 2013. Seasonal variations of sea-air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements[J]. Biogeosciences, 10(11): 7775-7791.
|
[61] |
ZHANG CHUANLUN, SHI TUO, LIU JIHUA, et al, 2022. Eco-engineering approaches for ocean negative carbon emission[J]. Science Bulletin, 67(24): 2564-2573.
doi: 10.1016/j.scib.2022.11.016
pmid: 36604035
|
[62] |
ZHANG YANYING, LING JUAN, YANG QINGSONG, et al, 2015. The functional gene composition and metabolic potential of coral-associated microbial communities[J]. Scientific Reports, 5: 16191.
doi: 10.1038/srep16191
pmid: 26536917
|