[1] |
黄晖, 尤丰, 练健生, 等, 2012. 海南岛西北部海域珊瑚礁造礁石珊瑚种类组成与分布[J]. 海洋科学, 36(9): 64-74.
|
|
HUANG HUI, YOU FENG, LIAN JIANSHENG, et al, 2012. Composition and distribution of scleractinian coral in the northwest of Hainan island[J]. Marine Sciences, 36(9): 64-74. (in Chinese with English abstract)
|
[2] |
黄玲英, 余克服, 施祺, 等, 2011. 三亚造礁石珊瑚虫黄藻光合作用效率的日变化规律[J]. 热带海洋学报, 30(2): 46-50.
|
|
HUANG LINGYING, YU KEFU, SHI QI, et al, 2011. Diurnal variations of photosynthetic efficiency of symbiotic algae of reef-building corals in a Sanya fringing reef[J]. Journal of Tropical Oceanography, 30(2): 46-50. (in Chinese with English abstract)
|
[3] |
李淑, 余克服, 施祺, 等, 2007. 南海北部珊瑚共生虫黄藻密度的种间与空间差异及其对珊瑚礁白化的影响[J]. 科学通报, 52(22): 2655-2662.
|
|
LI SHU, YU KEFU, SHI QI, et al, 2008. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching[J]. Chinese Science Bulletin, 53(2): 295-303. (in Chinese with English abstract)
|
[4] |
李淑, 余克服, 陈天然, 等, 2011. 珊瑚共生虫黄藻密度的季节变化及其与珊瑚白化的关系--以大亚湾石珊瑚为例[J]. 热带海洋学报, 30(2): 39-45.
|
|
LI SHU, YU KEFU, CHEN TIANRAN, et al, 2011. Seasonal patterns of densities of symbiotic zooxanthellae in scleractinian corals from Daya Bay, northern South China Sea, and relation to coral bleaching[J]. Journal of Tropical Oceanography, 30(2): 39-45. (in Chinese with English abstract)
|
[5] |
潘子良, 余克服, 王英辉, 等, 2019. 黄岩岛潟湖珊瑚的共生虫黄藻密度及其生态意义[J]. 广西大学学报(自然科学版), 44(6): 1752-1760.
|
|
PAN ZILIANG, YU KEFU, WANG YINGHUI, et al, 2019. The symbiotic zooxanthella density in corals from the lagoon of Huangyan Island and its ecological significance[J]. Journal of Guangxi University (Natural Science Edition), 44(6): 1752-1760. (in Chinese with English abstract)
|
[6] |
舒为, 田晓玉, 赵洪伟, 2020. 海南海口温泉真菌、细菌多样性及其环境影响因素分析[J]. 微生物学报, 60(9): 1999-2011.
|
|
SHU WEI, TIAN XIAOYU, ZHAO HONGWEI, 2020. Diversity of fungi and bacteria in hot springs in Haikou, Hainan province[J]. Acta Microbiologica Sinica, 60(9): 1999-2011. (in Chinese with English abstract)
|
[7] |
王荻潇, 钟敏, 雷晓凌, 等, 2018. 1株来自丛生盔形珊瑚的球托霉鉴定及生理学特性研究[J]. 微生物学杂志, 38(3): 57-63.
|
|
WANG DIXIAO, ZHONG MIN, LEI XIAOLING, et al, 2018. Identification and Physiological Characteristics of Gongronella butleri Isolated from Galaxea fascicularis[J]. Journal of Microbiology, 38(3): 57-63. (in Chinese with English abstract)
|
[8] |
徐佳, 陈彬, 雷晓凌, 等, 2011a. 丛生盔形珊瑚共附生可培养真菌多样性分析[J]. 微生物学通报, 38(8): 1193-1198.
|
|
XU JIA, CHEN BIN, LEI XIAOLING, et al, 2011a. Phylogenetic diversity analysis of cultured symbiotic fungi of Galaxea fascicularis L.[J]. Microbiology China, 38(8): 1193-1198. (in Chinese with English abstract)
|
[9] |
徐佳, 雷晓凌, 佘志刚, 等, 2011b. 丛生形盔珊瑚共附生真菌的分离及其抗菌活性的筛选[J]. 中国海洋药物, 30(5): 23-28.
|
|
XU JIA, LEI XIAOLING, SHE ZHIGANG, et al, 2011b. Isolation of symbiotic fungi from the coral Galaxea fascicularis and screening of their antibacterial activities[J]. Chinese Journal of Marine Drugs, 30(5): 23-28. (in Chinese with English abstract)
|
[10] |
张丹, 蒋群, 李英新, 等, 2015. 中国南海海绵和珊瑚共附生真菌多样性及其抑菌活性研究[J]. 中国海洋药物, 34(2): 1-9.
|
|
ZHANG DAN, JIANG QUN, LI YINGXIN, et al, 2015. Diversity and antibacterial activity of fungi associated with South China Sea sponges and corals[J]. Chinese Journal of Marine Drugs, 34(2): 1-9. (in Chinese with English abstract)
|
[11] |
周洁, 施祺, 余克服, 2011. 叶绿素荧光技术在珊瑚礁研究中的应用[J]. 热带地理, 31(2): 223-229.
|
|
ZHOU JIE, SHI QI, YU KEFU, 2011. Application of chlorophyll fluorescence technique in the study of coral reefs[J]. Tropical Geography, 31(2): 223-229. (in Chinese with English abstract)
|
[12] |
AINSWORTH T D, FORDYCE A J, CAMP E F, 2017. The other microeukaryotes of the coral reef microbiome[J]. Trends in Microbiology, 25(12): 980-991.
|
[13] |
ALDERMAN S C, 1998. Gloeotinia Temulenta and G. Granigena, two distinct species[J]. Mycologia, 90(3): 422-426.
|
[14] |
ALKER A P, SMITH G W, KIM K, 2001. Characterization of Aspergillus sydowii (Thom Et Church), a fungal pathogen of Caribbean sea fan corals[J]. Hydrobiologia, 460(1-3): 105-111.
|
[15] |
AMEND A S, BARSHIS D J, OLIVER T A, 2012. Coral-associated marine fungi form novel lineages and heterogeneous assemblages[J]. The ISME Journal, 6(7): 1291-1301.
|
[16] |
BAKER A C, 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium[J]. Annual Review of Ecology, Evolution, and Systematics, 34(1): 661-689.
|
[17] |
BHAGOOLI R, HIDAKA M, 2004. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses[J]. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 137(3): 547-555.
|
[18] |
BIAGI E, CAROSELLI E, BARONE M, et al, 2020. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the mediterranean coral Astroides calycularis living at CO2 vents[J]. Science of the Total Environment, 724: 138048.
|
[19] |
DEINER K, RENSHAW M A, LI YIYUAN, et al, 2017. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA[J]. Methods in Ecology and Evolution, 8(12): 1888-1898.
|
[20] |
GLASL B, WEBSTER N S, BOURNE D G, 2017. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems[J]. Marine Biology, 164(4): 91.
|
[21] |
GÓES-NETO A, MARCELINO V R, VERBRUGGEN H, et al, 2020. Biodiversity of endolithic fungi in coral skeletons and other reef substrates revealed with 18S rDNA metabarcoding[J]. Coral Reefs, 39(1): 229-238.
|
[22] |
GORBUNOV M Y, KOLBER Z S, LESSER M P, et al, 2001. Photosynthesis and photoprotection in symbiotic corals[J]. Limnology and Oceanography, 46(1): 75-85.
|
[23] |
HARVELL D, JORDÁN-DAHLGREN E, MERKEL S, et al, 2007. Coral disease, environmental drivers, and the balance between coral and microbial associates[J]. Oceanography, 20(1): 172-195.
|
[24] |
HOU JING, XU TAO, SU DINGJIA, et al, 2018. RNA-Seq reveals extensive transcriptional response to heat stress in the stony coral Galaxea fascicularis[J]. Frontiers in Genetics, 9: 37.
|
[25] |
HUGHES T P, BARNES M L, BELLWOOD D R, et al, 2017. Coral reefs in the Anthropocene[J]. Nature, 546(7656): 82-90.
|
[26] |
HUGHES T P, ANDERSON K D, CONNOLLY S R, et al, 2018a. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 359(6371): 80-83.
|
[27] |
HUGHES T P, KERRY J T, BAIRD A H, et al, 2018b. Global warming transforms coral reef assemblages[J]. Nature, 556(7702): 492-496.
|
[28] |
HUSSAIN A, INGOLE B, 2020. Massive coral bleaching in the patchy reef of Grande Island, along the eastern Arabian Sea during the 2015/16 global bleaching event[J]. Regional Studies in Marine Science, 39: 101410.
|
[29] |
LIN ZHENYUE, CHEN MINGLIANG, DONG XU, et al, 2017. Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners[J]. Scientific Reports, 7: 42100.
|
[30] |
LIN ZHENYUE, WANG LIUYING, CHEN MINGLIANG, et al, 2018. The acute transcriptomic response of coral-algae interactions to pH fluctuation[J]. Marine Genomics, 42: 32-40.
|
[31] |
MCDEVITT-IRWIN J M, BAUM J K, GARREN M, et al, 2017. Responses of coral-associated bacterial communities to local and global stressors[J]. Frontiers in Marine Science, 4: 262.
|
[32] |
NGUYEN N H, SONG ZEWEI, BATES S T, et al, 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 20: 241-248.
|
[33] |
PATEL N P, SHIMPI G G, HALDAR S, 2020. Evaluation of heterotrophic bacteria associated with healthy and bleached corals of gulf of Kutch, Gujarat, India for siderophore production and their response to climate change factors[J]. Ecological Indicators, 113: 106219.
|
[34] |
POGOREUTZ C, RÄDECKER N, CÁRDENAS A, et al, 2018. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome[J]. Ecology and Evolution, 8(4): 2240-2252.
|
[35] |
POLLOCK F J, LAMB J B, VAN DE WATER J A J M, et al, 2019. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals[J]. Royal Society Open Science, 6(6): 190355.
|
[36] |
PUTNAM H M, BAROTT K L, AINSWORTH T D, et al, 2017. The vulnerability and resilience of reef-building corals[J]. Current Biology, 27(11): R528-R540.
|
[37] |
QIN ZHENJUN, YU KEFU, WANG YINGHUI, et al, 2019. Spatial and intergeneric variation in physiological indicators of corals in the south china sea: insights into their current state and their adaptability to environmental stress[J]. Journal of Geophysical Research: Oceans, 124(5): 3317-3332.
|
[38] |
QUIMPO T J R, REQUILME J N C, GOMEZ E J, et al, 2020. Low coral bleaching prevalence at the Bolinao-Anda reef complex, Northwestern Philippines during the 2016 thermal stress event[J]. Marine Pollution Bulletin, 160: 111567.
|
[39] |
RÄDECKER N, POGOREUTZ C, VOOLSTRA C R, et al, 2015. Nitrogen cycling in corals: the key to understanding holobiont functioning?[J]. Trends in Microbiology, 23(8): 490-497.
|
[40] |
ROBERTS, CALLUM M, MCCLEAN, et al, 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs.[J]. Science, 295(5558): 1280-1284.
|
[41] |
SOLER-HURTADO M M, SANDOVAL-SIERRA J V, MACHORDOM A, et al, 2016. Aspergillus sydowii and other potential fungal pathogens in Gorgonian Octocorals of the Ecuadorian Pacific[J]. PLoS One, 11(11): e0165992.
|
[42] |
SPALDING M D, BROWN B E, 2015. Warm-water coral reefs and climate change[J]. Science, 350(6262): 769-771.
|
[43] |
THOMPSON J R, RIVERA H E, CLOSEK C J, et al, 2015. Microbes in the coral Holobiont: partners through evolution, development, and ecological interactions[J]. Frontiers in Cellular and Infection Microbiology, 4: 176.
|
[44] |
VANWONTERGHEM I, WEBSTER N S, 2020. Coral reef microorganisms in a changing climate[J]. iScience, 23(4): 100972.
|
[45] |
WANG QIONG, GARRITY G M, TIEDJE J M, et al, 2007. Nïave Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 73(16): 5261-5267.
|
[46] |
WOOLDRIDGE S A, 2010. Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners?[J]. BioEssays, 32(7): 615-625.
|
[47] |
WOOLDRIDGE S A, 2014. Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host[J]. Coral Reefs, 33(1): 15-27.
|
[48] |
WOOLDRIDGE S A, 2020. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef, Australia[J]. Marine Pollution Bulletin, 152: 107667.
|
[49] |
XU LIJIA, YU KEFU, LI SHU, et al, 2017a. Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea[J]. Coral Reefs, 36(2): 477-487
|
[50] |
XU SHENDONG, YU KEFU, ZHANG ZHINAN, et al, 2020. Intergeneric differences in trophic status of scleractinian corals from Weizhou Island, Northern South China Sea: implication for their different environmental stress tolerance[J]. Journal of Geophysical Research: Biogeosciences, 125(5): e2019JG005451.
|
[51] |
XU WEI, GUO SHUANGSHUANG, PANG KALAI, et al, 2017b. Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 123: 48-55.
|
[52] |
YELLOWLEES D, REES T A V, LEGGAT W, 2008. Metabolic interactions between algal symbionts and invertebrate hosts[J]. Plant, Cell & Environment, 31(5): 679-694.
|
[53] |
ZANEVELD J R, BURKEPILE D E, SHANTZ A A, et al, 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales[J]. Nature Communications, 7: 11833.
|
[54] |
ZHOU GUOWEI, CAI LIN, LI YUANCHAO, et al, 2017. Temperature-driven local acclimatization of Symbiodnium hosted by the coral Galaxea Fascicularis at Hainan Island, China[J]. Frontiers in Microbiology, 8: 2487.
|