Journal of Tropical Oceanography ›› 2021, Vol. 40 ›› Issue (4): 110-121.doi: 10.11978/2020093CSTR: 32234.14.2020093
• Marine Geology • Previous Articles Next Articles
WANG Yuanqi1(), YANG Yang2, ZHOU Liang3, WANG Yaping1, GAO Shu1(
)
Received:
2020-08-22
Revised:
2020-11-17
Online:
2021-07-10
Published:
2020-12-01
Contact:
GAO Shu
E-mail:51193904031@stu.ecnu.edu.cn;sgao@sklec.ecnu.edu.cn
Supported by:
CLC Number:
WANG Yuanqi, YANG Yang, ZHOU Liang, WANG Yaping, GAO Shu. Interpreting the origin of coastal boulders on a coral reef flat at Xiaodonghai of Hainan Island based on storm wave energy analysis[J].Journal of Tropical Oceanography, 2021, 40(4): 110-121.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Boulder parameters of a reef flat in the southwest coast of Xiaodonghai"
巨砾编号 | 长轴长度/m | 中轴长度/m | 短轴长度/m | Corey形状因子 | 质量/kg | 巨砾位置与礁坪前缘的距离/m |
---|---|---|---|---|---|---|
XD01 | 2.94 | 2.58 | 2.11 | 0.8 | 19820 | 64.6 |
XD02 | 1.83 | 1.82 | 1.18 | 0.6 | 4914 | 53.8 |
XD03 | 2.15 | 1.72 | 1.19 | 0.6 | 6370 | 46.5 |
XD04 | 1.63 | 1.34 | 1.21 | 0.8 | 3986 | 47.6 |
XD05 | 1.88 | 1.67 | 1.22 | 0.7 | 5587 | 40.2 |
XD06 | 2.53 | 2.44 | 1.67 | 0.7 | 8627 | 31.8 |
XD07 | 2.29 | 1.85 | 1.19 | 0.6 | 6625 | 49.2 |
XD08 | 2.48 | 2.30 | 1.51 | 0.6 | 6334 | 43.1 |
XD09 | 3.47 | 1.93 | 1.39 | 0.5 | 6479 | 57.1 |
XD010 | 2.15 | 1.91 | 1.27 | 0.6 | 4350 | 70.6 |
XD011 | 2.83 | 2.46 | 1.64 | 0.6 | 9335 | 32.6 |
XD012 | 2.48 | 2.46 | 1.61 | 0.6 | 8427 | 37.1 |
XD013 | 3.12 | 2.47 | 1.17 | 0.4 | 9682 | 39.4 |
XD014 | 2.61 | 2.25 | 1.54 | 0.6 | 7225 | 57.1 |
XD015 | 3.34 | 2.23 | 1.48 | 0.5 | 9045 | 71.9 |
XD016 | 2.72 | 2.61 | 1.61 | 0.6 | 10683 | 116.0 |
XD017 | 3.10 | 2.22 | 1.31 | 0.5 | 7680 | 84.2 |
XD018 | 3.16 | 3.02 | 1.62 | 0.5 | 13777 | 72.0 |
Tab. 2
Theoretical transport distances of storm boulders after mobilization on the reef flat"
Corey形状因子 | 巨砾质量/(×103kg) | 波高H=13m时的理论搬运距离/m | 波高H=6m时的理论搬运距离/m |
---|---|---|---|
0.4 | 0.1 | 277.8 | 60.0 |
1 | 127.6 | 28.1 | |
5 | 76.4 | 17.4 | |
10 | 61.7 | 14.3 | |
15 | 54.4 | 12.8 | |
20 | 49.9 | 12.0 | |
0.6 | 0.1 | 285.6 | 61.7 |
1 | 136.2 | 30.0 | |
5 | 81.1 | 18.3 | |
10 | 65.5 | 15.1 | |
15 | 57.6 | 13.5 | |
20 | 52.8 | 12.5 | |
0.8 | 0.1 | 299.2 | 64.6 |
1 | 139.4 | 30.6 | |
5 | 83.7 | 18.9 | |
10 | 67.2 | 15.5 | |
15 | 59.3 | 13.8 | |
20 | 54.3 | 12.8 |
Tab. 3
Theoretical spatial distribution and measured distances of boulders at Xiaodonghai"
巨砾编号 | 最小理论搬运距离/m | 最大理论搬运距离/m | 巨砾与礁坪前缘的实测距离/m |
---|---|---|---|
XD01 | 12.9 | 54.4 | 64.6 |
XD02 | 18.5 | 82.3 | 53.8 |
XD03 | 17.2 | 75.5 | 46.5 |
XD04 | 20.2 | 89.9 | 47.6 |
XD05 | 18.0 | 78.7 | 40.2 |
XD06 | 15.9 | 69.5 | 31.8 |
XD07 | 17.0 | 74.8 | 49.2 |
XD08 | 17.2 | 75.8 | 43.1 |
XD09 | 16.6 | 72.8 | 57.1 |
XD010 | 19.1 | 84.8 | 70.6 |
XD011 | 15.4 | 66.9 | 32.6 |
XD012 | 16.0 | 70.0 | 37.1 |
XD013 | 14.5 | 62.3 | 39.4 |
XD014 | 16.5 | 74.5 | 57.1 |
XD015 | 15.1 | 65.6 | 71.9 |
XD016 | 14.8 | 64.1 | 116.0 |
XD017 | 16.2 | 68.8 | 84.2 |
XD018 | 13.5 | 57.5 | 72.0 |
[1] | 陈哲, 2017. 浅谈近年影响海南岛风暴潮的因素探讨[J]. 科技风, (16): 126-128, 130 (in Chinese). |
[2] | 高抒, 贾建军, 杨阳, 等, 2019. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 41(10):141-160. |
GAO SHU, JIA JIANJUN, YANG YANG, et al, 2019. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 41(10):141-160 (in Chinese with English abstract). | |
[3] | 黄德银, 施祺, 张叶春, 2005. 海南岛鹿回头与全新世高海平面[J]. 海洋地质与第四纪地质, 25(4):5-11. |
HUANG DEYIN, SHI QI, ZHANG YECHUN, 2005. The coral reef and high sea level in Luhuitou, Hainan Island during Holocene[J]. Marine Geology & Quaternary Geology, 25(4):5-11 (in Chinese with English abstract). | |
[4] | 李淑江, 李泽文, 范斌, 等, 2016. 海南岛东南近岸海浪观测及统计特征[J]. 海洋科学进展, 34(1):1-9. |
LI SHUJIANG, LI ZEWEN, FAN BIN, et al, 2016. Wave observation and statistical analysis in the southeast coast of Hainan Island[J]. Advances in Marine Science, 34(1):1-9 (in Chinese with English abstract). | |
[5] | 李文欢, 石海莹, 2013. 海南省风暴潮灾害预报及防范系统研究[M]. 北京: 海洋出版社(in Chinese). |
[6] | 练健生, 黄晖, 黄良民, 等, 2010. 三亚珊瑚礁及其生物多样性[M]. 北京: 海洋出版社: 106 (in Chinese). |
[7] | 刘桢峤, 周亮, 高抒, 2019. 基于地面3D激光扫描技术的海南岛南部海岸巨砾沉积研究[J]. 海洋学报, 41(11):127-141. |
LIU ZHENQIAO, ZHOU LIANG, GAO SHU, 2019. Application of the terrestrial laser scanner to the coastal boulders on the southern coast of Hainan Island[J]. Hiayang Xuubao, 41(11):127-141 (in Chinese with English abstract). | |
[8] | 毛龙江, 张永战, 魏灵, 等, 2006. 海南岛三亚湾海滩研究[J]. 第四纪研究, 26(3):477-484. |
MAO LONGJIANG, ZHANG YONGZHAN, WEI LING, et al, 2006. Study on beach characteristics in Sanya area of Hainan Island[J]. Quaternary Sciences, 26(3):477-484 (in Chinese with English abstract). | |
[9] | 苗庆生, 2011. 南海台风浪场特征的计算与分析[D]. 青岛: 中国海洋大学. |
MIAO QINGSHENG, 2011. Calculation and analysis of typhoon waves in South China Sea[D]. Qingdao: Ocean University of China (in Chinese with English abstract). | |
[10] | 王月, 沈建伟, 龙江平, 2011. 海南岛三亚小东海珊瑚礁坪生态沉积分带和碳酸盐沉积作用[J]. 中国科学 D辑: 地球科学, 41(3):362-374. |
WANG YUE, SHEN JIANWEI, LONG JIANGPING, 2011. Ecological-sedimentary zonations and carbonate deposition, Xiaodonghai Reef Flat, Sanya, Hainan Island, China[J]. Science China Earth Sciences, 54(3):359-371. | |
[11] | 叶琳, 于福江, 吴玮, 2005. 我国海啸灾害及预警现状与建议[J]. 海洋预报, 22(S1):147-157. |
YE LIN, YU FUJIANG, WU WEI, 2005. The disaster and warning of tsunami in China and the suggestion in future[J]. Marine Forecasts, 22(S1):147-157 (in Chinese with English abstract). | |
[12] | 尹洪强, 梁书秀, 2014. 基于SWAN模式对台风海燕风浪的推算[J]. 中国水运, 14(6):105-107, 111 (in Chinese). |
[13] | BAGNOLD R A, 1963. Beach and nearshore processes. Part I, mechanics of marine sedimentation[M]// THORNE C R, MACARTHUR R C, BRADLEY J B. The physics of sediment transport by wind and water. New York: American Society of Civil Engineers: 507-528. |
[14] |
BARBANO M S, PIRROTTA C, GERARDI F, 2010. Large boulders along the South-eastern Ionian coast of Sicily: storm or tsunami deposits?[J]. Marine Geology, 275(1-4):140-154.
doi: 10.1016/j.margeo.2010.05.005 |
[15] | BIOLCHI S, FURLANI S, ANTONIOLI F, et al, 2016. Boulder accumulations related to extreme wave events on the eastern coast of Malta[J]. Natural Hazards and Earth System Sciences, 16(3):737-756. |
[16] |
BRYANT E A, NOTT J, 2001. Geological indicators of large tsunami in Australia[J]. Natural Hazards, 24(3):231-249.
doi: 10.1023/A:1012034021063 |
[17] |
CAUSON D J, GAUCI R, 2017. Evidence of extreme wave events from boulder deposits on the South-East Coast of Malta (Central Mediterranean)[J]. Natural Hazards, 86(S2):543-568.
doi: 10.1007/s11069-016-2525-4 |
[18] | COREY A T, 1949. Influence of shape on the fall velocity of sand grains[D]. Fort Collins: Colorado Agricultural and Mechanical College. |
[19] |
COSTA P J M, ANDRADE C, FREITAS M C, et al, 2011. Boulder deposition during major tsunami events[J]. Earth Surface Processes and Landforms, 36(15):2054-2068.
doi: 10.1002/esp.v36.15 |
[20] |
ETIENNE S, PARIS R, 2010. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland)[J]. Geomorphology, 114(1-3):55-70.
doi: 10.1016/j.geomorph.2009.02.008 |
[21] |
ETIENNE S, BUCKLEY M, PARIS R, et al, 2011. The use of boulders for characterising past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis[J]. Earth-Science Reviews, 107(1-2):76-90.
doi: 10.1016/j.earscirev.2010.12.006 |
[22] |
FELTON E A, CROOK K A W, 2003. Evaluating the impacts of huge waves on rocky shorelines: An essay review of the book ‘Tsunami - the underrated hazard’[J]. Marine Geology, 197(1-4):1-12.
doi: 10.1016/S0025-3227(03)00086-0 |
[23] |
GOFF J, DOMINEY-HOWES D, 2009. Australasian palaeotsunamis — Do Australia and New Zealand have a shared trans-Tasman prehistory?[J]. Earth Science Reviews, 97(1-4):147-154.
doi: 10.1016/j.earscirev.2009.09.003 |
[24] |
GOFF J, WEISS R, COURTNEY C, et al, 2010. Testing the hypojournal for tsunami boulder deposition from suspension[J]. Marine Geology, 277(1-4):73-77.
doi: 10.1016/j.margeo.2010.08.003 |
[25] |
GOTO K, CHAVANICH S A, IMAMURA F, et al, 2007. Distribution, origin and transport process of boulders deposited by the 2004 Indian ocean tsunami at Pakarang cape, Thailand[J]. Sedimentary Geology, 202(4):821-837.
doi: 10.1016/j.sedgeo.2007.09.004 |
[26] |
GOTO K, MIYAGI K, KAWAMATA H, et al, 2010a. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan[J]. Marine Geology, 269(1-2):34-45.
doi: 10.1016/j.margeo.2009.12.004 |
[27] |
GOTO K, KAWANA T, IMAMURA F, 2010b. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan[J]. Earth-Science Reviews, 102(1-2):77-99.
doi: 10.1016/j.earscirev.2010.06.005 |
[28] |
GOTO K, MIYAGI K, KAWANA T, et al, 2011. Emplacement and movement of boulders by known storm waves-field evidence from the Okinawa Islands, Japan[J]. Marine Geology, 283(1-4):66-78.
doi: 10.1016/j.margeo.2010.09.007 |
[29] |
GOTO K, SUGAWARA D, IKEMA S, et al, 2012. Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-Oki tsunami at Sabusawa Island, Japan[J]. Sedimentary Geology, 282:188-198.
doi: 10.1016/j.sedgeo.2012.03.017 |
[30] |
HAYNE M, CHAPPELL J, 2001. Cyclone frequency during the last 5000 years at Curacoa Island, north Queensland, Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(3-4):207-219.
doi: 10.1016/S0031-0182(00)00217-0 |
[31] |
HONGO C, KURIHARA H, GOLBUU Y, 2018. Coral boulders on Melekeok reef in the Palau Islands: an indicator of wave activity associated with tropical cyclones[J]. Marine Geology, 399:14-22.
doi: 10.1016/j.margeo.2018.02.004 |
[32] | LORANG M S, 2000. Predicting threshold entrainment mass for a boulder beach[J]. Journal of Coastal Research, 16(2):432-445. |
[33] |
LORANG M S, 2011. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis[J]. Marine Geology, 283(1-4):90-97.
doi: 10.1016/j.margeo.2010.10.005 |
[34] |
MAK S, CHAN L S, 2007. Historical tsunamis in South China[J]. Natural Hazards, 43(1):147-164.
doi: 10.1007/s11069-007-9113-6 |
[35] |
MASTRONUZZI G, SANSÒ P, 2004. Large boulder accumulations by extreme waves along the Adriatic coast of southern Apulia (Italy)[J]. Quaternary International, 120(1):173-184.
doi: 10.1016/j.quaint.2004.01.016 |
[36] |
MAY S M, ENGEL M, BRILL D, et al, 2015. Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan[J]. Earth Surface Dynamics, 3(4):543-558.
doi: 10.5194/esurf-3-543-2015 |
[37] |
NANDASENA N A K, PARIS R, TANAKA N, 2011. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)[J]. Marine Geology, 281(1-4):70-84.
doi: 10.1016/j.margeo.2011.02.005 |
[38] |
NANDASENA N A K, TANAKA N, SASAKI Y, et al, 2013. Boulder transport by the 2011 Great East Japan tsunami: comprehensive field observations and whither model predictions?[J]. Marine Geology, 346:292-309.
doi: 10.1016/j.margeo.2013.09.015 |
[39] | NIELSEN P, 1992. Coastal bottom boundary layers and sediment transport[M]. Singapore: World Scientific Publishing. |
[40] |
NOTT J, 1997. Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause—tsunami or tropical cyclone[J]. Marine Geology, 141(1-4):193-207.
doi: 10.1016/S0025-3227(97)00063-7 |
[41] |
NOTT J, 2003. Waves, coastal boulder deposits and the importance of the pre-transport setting[J]. Earth and Planetary Science Letters, 210(1-2):269-276.
doi: 10.1016/S0012-821X(03)00104-3 |
[42] |
PARIS R, LAVIGNE F, WASSMER P, et al, 2007. Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia)[J]. Marine Geology, 238(1-4):93-106.
doi: 10.1016/j.margeo.2006.12.009 |
[43] | POWER H E, BALDOCK T E, CALLAGHAN D P, et al, 2013. Surf zone states and energy dissipation regimes - A similarity model[J]. Coastal Engineering Journal, 55(1): 1350003-1-1350003-18. |
[44] |
SAINTILAN N, ROGERS K, 2005. Recent storm boulder deposits on the Beecroft Peninsula, New South Wales, Australia[J]. Geographical Research, 43(4):429-432.
doi: 10.1111/ages.2005.43.issue-4 |
[45] |
SCHEFFERS A, KELLETAT D, 2003. Sedimentologic and geomorphologic tsunami imprints worldwide—a review[J]. Earth-Science Reviews, 63(1-2):83-92.
doi: 10.1016/S0012-8252(03)00018-7 |
[46] |
SCHEFFERS A, KELLETAT D, VÖTT A, et al, 2008. Late Holocene tsunami traces on the western and southern coastlines of the Peloponnesus (Greece)[J]. Earth and Planetary Science Letters, 269(1-2):271-279.
doi: 10.1016/j.epsl.2008.02.021 |
[47] |
SCICCHITANO G, MONACO C, TORTORICI L, 2007. Large boulder deposits by tsunami waves along the Ionian coast of South-eastern Sicily (Italy)[J]. Marine Geology, 238(1-4):75-91.
doi: 10.1016/j.margeo.2006.12.005 |
[48] |
SPISKE M, BÖRÖCZ Z, BAHLBURG H, 2008. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the lesser Antilles, Southern Caribbean. Earth and Planetary Science Letters, 268(3):384-396.
doi: 10.1016/j.epsl.2008.01.030 |
[49] |
SUN LIGUANG, ZHOU XIN, HUANG WEN, et al, 2013. Preliminary evidence for a 1000-year-old tsunami in the South China Sea[J]. Scientific Reports, 3(1):1655.
doi: 10.1038/srep01655 |
[50] | TERRY J P, LAU A Y A, ETIENNE S, 2013. Reef-platform coral boulders: evidence for high-energy marine inundation events on tropical coastlines[M]. Singapore: Springer: 63-65. |
[51] |
TERRY J P, ETIENNE S, 2014. Potential for timing high-energy marine inundation events in the recent geological past through age-dating of reef boulders in Fiji[J]. Geoscience Letters, 1(1):14.
doi: 10.1186/s40562-014-0014-8 |
[52] |
TERRY J P, OLIVER G J H, FRIESS D A, 2016. Ancient high-energy storm boulder deposits on Ko Samui, Thailand, and their significance for identifying coastal hazard risk[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 454:282-293.
doi: 10.1016/j.palaeo.2016.04.046 |
[53] |
WEISS R, 2012. The mystery of boulders moved by tsunamis and storms[J]. Marine Geology, 295-298:28-33.
doi: 10.1016/j.margeo.2011.12.001 |
[54] |
YU KEFU, ZHAO JIANXIN, SHI QI, et al, 2009. Reconstruction of storm/tsunami records over the last 4000 years using transported coral blocks and lagoon sediments in the southern South China Sea[J]. Quaternary International, 195(1-2):128-137.
doi: 10.1016/j.quaint.2008.05.004 |
[1] | ZHAO Zhongwei, WU Lingyun, GAO Weijian, LI Wei. A study of the effect of shore platform morphology on coastal erosion of rocky cliffs in the Wucaiwan Bay, E’man, Hainan Island [J]. Journal of Tropical Oceanography, 2024, 43(5): 106-115. |
[2] | DING Yiting, DONG Dibo. Study on comprehensive risk assessment of storm surges for Fujian Province from the perspective of resilience [J]. Journal of Tropical Oceanography, 2024, 43(1): 126-136. |
[3] | ZENG Weite, ZHANG Dongqiang, LIU Bing, YANG Yongpeng, ZHANG Hangfei, WU Duoyu, WANG Xiaolin. Distribution, main controlling factors and pollution assessment of heavy metals in surface seawater of the Northern Bay of Hainan Island, south China [J]. Journal of Tropical Oceanography, 2023, 42(6): 156-167. |
[4] | ZHANG Zheran, HU Junyang, ZHOU Kai, ZHANG Penghui, XING Jiuxing, CHEN Shengli. Storm surge simulations of the coastal area of Shenzhen using different types of typhoon meteorological fields—a case study of Typhoon Mangkhut* [J]. Journal of Tropical Oceanography, 2023, 42(6): 1-14. |
[5] | GAO Na, ZHAO Mingli, MA Yi, XU Wanming, ZHAN Haigang, CAI Shuqun. Effect of typhoon on storm surge in the Pearl River Estuary [J]. Journal of Tropical Oceanography, 2023, 42(1): 32-42. |
[6] | XU Jie, GUO Jibing, CHEN Zhiqiang, ZHU Zhihui, WANG Qin, TANG Yanling. Comparative study on the contribution of various influential factors and characteristics analysis of an extra-tropical storm surge caused by cold front in the Yangshan Port and its adjacent area [J]. Journal of Tropical Oceanography, 2022, 41(4): 126-135. |
[7] | DENG Guotong, LIU Mincong, XING Jiuxing, SHENG Jinyu, ZHOU Kai, CHEN Shengli. Analysis on the influencing factors of storm surges near Shenzhen [J]. Journal of Tropical Oceanography, 2022, 41(3): 91-100. |
[8] | SUN Fenglin. Disaster loss assessment of storm surge based on Dempster-Shafer theory of evidence [J]. Journal of Tropical Oceanography, 2022, 41(1): 75-81. |
[9] | SHEN Qianying, JI Xiaomei, ZHANG Wei, XU Yanwen. Impact of estuarine storm surge barriers on spatiotemporal variation of tidal asymmetry in a delta* [J]. Journal of Tropical Oceanography, 2021, 40(5): 1-9. |
[10] | MENG Tian, CHEN Zuo, ZHU Jun, ZOU Xiaoxiao, FU Qingyan, BAO Shixiang. Morphological and molecular study on marine green alga, Halimeda velasquezii, first recorded in Hainan Island [J]. Journal of Tropical Oceanography, 2020, 39(6): 114-121. |
[11] | Min ZHANG, Jun LUO, Jinlei HU, Xuezhi ZENG. Inundation risk assessment of storm surge along Lei Zhou coastal areas* [J]. Journal of Tropical Oceanography, 2019, 38(2): 1-12. |
[12] | YIN Chengtuan, ZHANG Jinshan, XIONG Mengjie, XU Junhui. Trend analysis of typhoon and storm surge disaster on the South China Sea coast of China [J]. Journal of Tropical Oceanography, 2019, 38(1): 35-42. |
[13] | Xingru FENG, Jinyuan LI, Baoshu YIN, Dezhou YANG, Haiying CHEN, Guandong GAO. Characteristics of ocean waves in coastal area of Dongfang, Hainan Island based on observations [J]. Journal of Tropical Oceanography, 2018, 37(3): 1-8. |
[14] | Tiantian GUO, Shengbo CHEN, Tianqi LU. The inversion of multiple-phase SSTs based on the MODIS data: a case study on the southwest coastal waters of Hainan Island [J]. Journal of Tropical Oceanography, 2017, 36(1): 9-14. |
[15] | CHEN Biao, WANG Jing, JING Zhiyou, LI Min. Seasonal and interannual variation of thermal fronts off the east coast of Hainan Island and the west coast of Guangdong [J]. Journal of Tropical Oceanography, 2016, 35(5): 1-9. |
|