Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (6): 114-124.doi: 10.11978/2022007CSTR: 32234.14.2022007
• Marine Biology • Previous Articles Next Articles
WUZHONG Qiyue1,2,3(), WANG Lei3(
), CHEN Lifei4, LI Xiubao1,2(
), DONG Zhijun3
Received:
2022-01-13
Revised:
2022-03-17
Online:
2022-11-10
Published:
2022-03-25
Contact:
WANG Lei, LI Xiubao
E-mail:wuzhongqiyue@163.com;lwang@yic.ac.cn;xiubaoli@hainanu.edu.cn
Supported by:
CLC Number:
WUZHONG Qiyue, WANG Lei, CHEN Lifei, LI Xiubao, DONG Zhijun. Effects of diurnal changes of ocean acidification and hypoxia on the ephyrae of Rhopilema esculentum[J].Journal of Tropical Oceanography, 2022, 41(6): 114-124.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Chemical parameters of seawater in this experiment (mean±SD)"
参数 | 恒定 | 波动pH | 波动DO | 波动pH-DO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照 | 酸化 | 低氧 | 酸化低氧耦合 | 白天 | 夜间 | 平均值 | 白天 | 夜间 | 平均值 | 白天 | 夜间 | 平均值 | ||
pH | 8.11 ±0.02 | 7.58 ±0.01 | 8.13 ±0.01 | 7.61 ±0.02 | 8.02 ±0.01 | 7.20 ±0.02 | 7.61 ±0.41 | 8.08 ±0.02 | 8.10 ±0.01 | 8.09 ±0.02 | 8.01 ±0.01 | 7.20 ±0.01 | 7.60 ±0.41 | |
DO/(mg·L-1) | 7.18 ±0.09 | 7.22 ±0.10 | 2.10 ±0.11 | 1.98 ±0.10 | 7.19 ±0.05 | 7.20 ±0.06 | 7.20 ±0.06 | 3.02 ±0.23 | 1.18 ±0.09 | 2.10 ±0.94 | 3.04 ±0.16 | 0.89 ±0.05 | 1.97 ±1.08 | |
盐度/‰ | 32.05 ±0.04 | 32.02 ±0.03 | 32.05 ±0.04 | 31.92 ±0.13 | 31.88 ±0.16 | 31.89 ±0.08 | 31.88 ±0.13 | 31.97 ±0.10 | 31.92 ±0.09 | 31.95 ±0.10 | 31.97 ±0.09 | 31.88 ±0.03 | 31.92 ±0.08 | |
温度/℃ | 17.97 ±0.15 | 18.04 ±0.03 | 18.13 ±0.16 | 18.04 ±0.12 | 18.03 ±0.12 | 17.97 ±0.16 | 18.00 ±0.14 | 18.17 ±0.08 | 18.09 ±0.08 | 18.13 ±0.09 | 18.11 ±0.18 | 17.91 ±0.07 | 18.01 ±0.17 | |
TA/(µmol·kg-1) | 2180 ±43 | 2116 ±30 | 2125 ±27 | 2118 ±25 | 2238 ±43 | 2196 ±40 | 2217 ±42 | 2211 ±47 | 2233 ±25 | 2222 ±38 | 2232 ±27 | 2217 ±18 | 2225 ±21 | |
pCO2/μatm | 463 ±23 | 1679 ±57 | 423 ±14 | 1568 ±72 | 593 ±11 | 4393 ±186 | 2493 ±1904 | 502 ±29 | 480 ±12 | 491 ±25 | 613 ±19 | 4443 ±137 | 2528 ±1917 | |
DIC/(µmol·kg-1) | 1994 ±41 | 2108 ±28 | 1931 ±26 | 2102 ±25 | 2086 ±34 | 2320 ±35 | 2203 ±122 | 2035 ±47 | 2047 ±17 | 2041 ±36 | 2085 ±24 | 2344 ±13 | 2215 ±131 | |
方解石饱和度 | 3.34 ±0.13 | 1.09 ±0.02 | 3.42 ±0.06 | 1.16 ±0.04 | 2.90 ±0.09 | 0.47 ±0.02 | 1.69 ±1.22 | 3.24 ±0.12 | 3.40 ±0.10 | 3.32 ±0.14 | 2.82 ±0.10 | 0.48 ±0.01 | 1.65 ±1.17 | |
文石饱和度 | 3.34 ±0.13 | 0.70 ±0.01 | 2.20 ±0.04 | 0.75 ±0.03 | 1.86 ±0.06 | 0.31 ±0.01 | 1.09 ±0.78 | 2.08 ±0.07 | 2.19 ±0.07 | 2.14 ±0.09 | 1.82 ±0.07 | 0.31 ±0.00 | 1.06 ±0.76 |
Tab. 2
Two-way ANOVA summary: Effects of constant acidification and hypoxia on the R. esculentum ephyrae"
生理指标 | 因素 | df | MS | F | P |
---|---|---|---|---|---|
伞部直径 | pH | 1 | 0.980 | 1.470 | 0.231 |
DO | 1 | 1.912 | 2.865 | 0.096 | |
pH×DO | 1 | 0.250 | 0.374 | 0.543 | |
收缩频率 | pH | 1 | 2522.017 | 10.344 | 0.002 |
DO | 1 | 2706.817 | 11.102 | 0.002 | |
pH×DO | 1 | 799.350 | 3.278 | 0.076 | |
Ca2+-ATP酶 | pH | 1 | 8.991 | 148.768 | <0.001 |
DO | 1 | 0.000 | 0.002 | 0.961 | |
pH×DO | 1 | 1.126 | 18.631 | <0.001 | |
Na+K+-ATP酶 | pH | 1 | 29.029 | 47.032 | <0.001 |
DO | 1 | 43.547 | 70.554 | <0.001 | |
pH×DO | 1 | 11.776 | 19.079 | <0.001 | |
酸性磷酸酶 | pH | 1 | 1779.697 | 69.081 | <0.001 |
Tab. 3
Two-way ANOVA summary: Effects of fluctuating acidification and hypoxia on the R. esculentum ephyrae"
生理指标 | 因素 | df | MS | F | P |
---|---|---|---|---|---|
伞部直径 | pH | 1 | 1.653 | 3.065 | 0.085 |
DO | 1 | 2.046 | 3.793 | 0.056 | |
pH×DO | 1 | 0.968 | 1.794 | 0.186 | |
收缩频率 | pH | 1 | 4437.600 | 9.869 | 0.003 |
DO | 1 | 4001.667 | 8.900 | 0.004 | |
pH×DO | 1 | 912.600 | 2.030 | 0.160 | |
Ca2+-ATP酶 | pH | 1 | 0.007 | 0.177 | 0.678 |
DO | 1 | 0.093 | 2.329 | 0.143 | |
pH×DO | 1 | 2.097 | 52.710 | <0.001 | |
Na+K+-ATP酶 | pH | 1 | 40.397 | 35.235 | <0.001 |
DO | 1 | 66.475 | 57.982 | <0.001 | |
pH×DO | 1 | 35.541 | 31.000 | <0.001 | |
酸性磷酸酶 | pH | 1 | 343.219 | 47.102 | <0.001 |
DO | 1 | 24.000 | 3.294 | 0.085 | |
pH×DO | 1 | 558.655 | 76.668 | <0.001 | |
碱性磷酸酶 | pH | 1 | 4.621 | 0.075 | 0.787 |
DO | 1 | 95.914 | 1.563 | 0.226 | |
pH×DO | 1 | 4052.673 | 66.045 | <0.001 | |
过氧化氢酶 | pH | 1 | 94.056 | 19.397 | <0.001 |
DO | 1 | 167.074 | 34.456 | <0.001 | |
pH×DO | 1 | 68.204 | 14.066 | 0.001 | |
丙二醛 | pH | 1 | 6.288 | 39.084 | <0.001 |
DO | 1 | 5.818 | 36.164 | <0.001 | |
pH×DO | 1 | 4.597 | 28.572 | <0.001 |
Fig. 3
Enzyme activities of R. esculentum ephyrae after constant/fluctuating acidification and/or hypoxia exposure. The * above error bar indicates the significant difference (P<0.05) as compared to control group; the different lowercase letters indicate significant differences (P<0.05) between constant and fluctuating treatment groups"
[1] | 丁耕芜, 陈介康, 1981. 海蜇的生活史[J]. 水产学报, 5(2): 93-102. |
DING GENGWU, CHEN JIEKANG, 1981. The life history of Rhopilema esculenta Kishinouye[J]. Journal of Fisheries of China, 5(2): 93-102. (in Chinese with English abstract) | |
[2] | 韩春艳, 何晓琳, 李安文, 等, 2016. 酸碱胁迫对奥尼罗非鱼幼鱼鳃组织结构及Na+-K+-ATP酶活力的影响[J]. 安徽农业科学, 44(11): 273-276. |
HAN CHUNYAN, HE XIAOLIN, LI ANWEN, et al, 2016. Effects of pH stress on structure, activity of Na+-K+-ATPase in gill of tilapia (Oreochromis aureus×Oreochromis niloticus)[J]. Journal of Anhui Agricultural Sciences, 44(11): 273-276. (in Chinese with English abstract) | |
[3] | 霍达, 2020. 刺参应对高温低氧胁迫的生理响应与分子调控特征[D]. 青岛: 中国科学院大学(中国科学院海洋研究所): 1-183. |
HUO DA, 2020. The physiological response and molecular regulation mechanism of sea cucumbers under thermal and hypoxic stresses[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences: 1-183. (in Chinese with English abstract) | |
[4] | 姜娓娓, 方建光, 李加琦, 等, 2017. 温度胁迫对皱纹盘鲍生理和生化活动的影响[J]. 中国水产科学, 24(2): 220-230. |
JIANG WEIWEI, FANG JIANGUANG, LI JIAQI, et al, 2017. Effects of temperature change on physiological and biochemical activities of Haliotis discus hannai Ino[J]. Journal of Fishery Sciences of China, 24(2): 220-230. (in Chinese with English abstract)
doi: 10.3724/SP.J.1118.2017.16133 |
|
[5] | 李飞, 石加慧, 臧瑜, 等, 2018. 海洋酸化对日本虎斑猛水蚤发育、繁殖以及ATP酶活性的影响[J]. 海洋湖沼通报, (4): 44-50. |
LI FEI, SHI JIAHUI, ZANG YU, et al, 2018. Effect of ocean acidification on development, reproduction and ATPase activity of Tigriopus japonicus Mori, 1938[J]. Transactions of Oceanology and Limnology, (4): 44-50. (in Chinese with English abstract) | |
[6] | 李云峰, 李玉龙, 周遵春, 等, 2020. 我国北方地区海蜇池塘养殖技术研究进展[J]. 水产科学, 39(2): 286-291. |
LI YUNFENG, LI YULONG, ZHOU ZUNCHUN, et al, 2020. Pond culture of edible jellyfish Rhopilema esculentum in North China coast: research progress[J]. Fisheries Science, 39(2): 286-291. (in Chinese with English abstract) | |
[7] | 刘顶海, 2011. 海蜇(Rhopilema esculenta)幼体发育、苗种培育及生长规律的研究[D]. 上海: 上海海洋大学: 1-65. |
LIU DINGHAI, 2011. Study on larva development, juvenile breeding and growth characteristics of Rhopilema esculenta[D]. Shanghai: Shanghai Ocean University: 1-65. (in Chinese with English abstract) | |
[8] | 刘辉, 赵建民,王清, 2018-07-03. 一种海洋酸化和低氧模拟装置及其控制方法: 中国, CN108241394A[P]. |
LIU HUI, ZHAO JIANMIN, WANG QING, 2018-07-03. Ocean acidification and low oxygen simulation device and control method thereof: CN, CN108241394A[P]. (in Chinese) | |
[9] |
宋金明, 王启栋, 2021. 近40年来对南海化学海洋学研究的新认知[J]. 热带海洋学报, 40(3): 15-24.
doi: 10.11978/YG2020010 |
SONG JINMING, WANG QIDONG, 2021. New understanding about Chemical Oceanography in the South China Sea since 1980[J]. Journal of Tropical Oceanography, 40(3): 15-24. (in Chinese with English abstract)
doi: 10.11978/YG2020010 |
|
[10] | 宋晶, 吴垠, 李晓东, 等, 2009. 海蜇生长、存活影响因子的研究现状[J]. 河北渔业, (6): 45-49. |
SONG JING, WU YIN, LI XIAODONG, et al, 2009. Influence factors on growth and survival of Rhopilema esculenta[J]. Hebei Fisheries, (6): 45-49. (in Chinese with English abstract) | |
[11] | 孙婷婷, 刘中援, 梁丽琨, 等, 2017. 海蜇幼体环介导等温扩增快速检测方法的建立和应用[J]. 应用海洋学学报, 36(4): 538-544. |
SUN TINGTING, LIU ZHONGYUAN, LIANG LIKUN, et al, 2017. Development a rapid assay to detect the edible jellyfish Rhopilema esculentum larvae using loop-mediated isothermal amplification method[J]. Journal of Applied Oceanography, 36(4): 538-544. (in Chinese with English abstract) | |
[12] | 王国善, 于志刚, 米铁柱, 等, 2014. 环境因子对海蜇生长发育影响的研究进展[J]. 海洋科学, 38(1): 85-90. |
WANG GUOSHAN, YU ZHIGANG, MI TIEZHU, et al, 2014. The research progress of environmental factors on the growth and development in Rhopilema esculenta[J]. Marine Sciences, 38(1): 85-90. (in Chinese) | |
[13] | 王雷, 2020. 海月水母对海洋酸化和铜离子胁迫的生理响应研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所): 1-79. |
WANG LEI, 2020. Physiological response of moon jellyfish Aurelia coerulea to ocean acidification and copper ion stress[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences: 1-79. (in Chinese with English abstract) | |
[14] | 王晓芹, 2018. 海洋酸化胁迫对紫贻贝和长牡蛎生理活动的影响及其缓解途径[D]. 上海: 上海海洋大学: 1-68. |
WANG XIAOQIN, 2018. Effect of ocean acidification stress on physiological activity of Mytilus galloprovincialis and Crassostrea gigas and mitigation measures[D]. Shanghai: Shanghai Ocean University: 1-68. (in Chinese with English abstract) | |
[15] | 韦钦胜, 王保栋, 于志刚, 等, 2017. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 47(1): 114-134. |
WEI QINSHENG, WANG BAODONG, YU ZHIGANG, et al, 2017. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China Earth Sciences, 60(2): 360-381. (in Chinese with English abstract)
doi: 10.1007/s11430-015-5542-8 |
|
[16] | 文春根, 张丽红, 胡宝庆, 等, 2009. pH对背角无齿蚌(Anodonta woodiana)5种免疫因子的影响[J]. 南昌大学学报(理科版), 33(2): 172-176. |
WEN CHUNGEN, ZHANG LIHONG, HU BAOQING, et al, 2009. Effect of pH on the five immune factors of Anodonta woodiana[J]. Journal of Nanchang University (Natural Science), 33(2): 172-176. (in Chinese with English abstract) | |
[17] | 肖武汉, 2014. 低氧信号传导途径与鱼类低氧适应[J]. 中国科学: 生命科学, 44(12): 1227-1235. |
XIAO WUHAN, 2015. The hypoxia signaling pathway and hypoxic adaptation in fishes[J]. Science China Life Sciences, 58(2): 148-155. (in Chinese with English abstract)
doi: 10.1007/s11427-015-4801-z pmid: 25595051 |
|
[18] | 徐彦, 2012. 菲律宾蛤仔(Ruditapes philippinarum)对重金属离子—Cd2+、Pb2+免疫应激响应的研究[D]. 青岛: 中国海洋大学: 1-83. |
XU YAN, 2012. Studies on immune responses to heavy metal ions—Cd2+、Pb2+ in Ruditapes philippinarum[D]. Qingdao: Ocean University of China: 1-83. (in Chinese with English abstract) | |
[19] | 曾姣, 2021. 大黄鱼幼鱼对酸化-低氧胁迫的生理响应[D]. 上海: 上海海洋大学: 1-103. |
ZENG JIAO, 2021. Physiological response of juvenile large yellow croaker Larimichthys crocea under acidification-hypoxia stress[D]. Shanghai: Shanghai Ocean University: 1-103. (in Chinese with English abstract) | |
[20] | 张培玉, 唐学玺, 董双林, 2007. 蒽对太平洋牡蛎不同组织抗氧化酶活性差异性影响与膜脂质过氧化研究[J]. 海洋环境科学, 26(5): 434-437. |
ZHANG PEIYU, TANG XUEXI, DONG SHUANGLIN, 2007. Effects of anthracene on differences of antioxidant enzymes activities and peroxide of membrane lipid of different tissues of Crassostrea gigas[J]. Marine Environmental Science, 26(5): 434-437. (in Chinese with English abstract) | |
[21] | 朱晓闻, 2012. 温度、盐度、pH对马氏珠母贝稚贝生理学特征的联合效应研究[D]. 湛江: 广东海洋大学: 1-98. |
ZHU XIAOWEN, 2012. Combined effects of temperature, salinity and pH on the physiological features of the juveniles of Pinctada martensii (dunker)[D]. Zhanjiang: Guangdong Ocean University: 1-98. (in Chinese with English abstract) | |
[22] | 庄淑芳, 张民, 陈芳奕, 2014. 海洋生物响应海洋酸化研究进展[J]. 海峡科学, (8): 3-6. (in Chinese) |
[23] |
ALGUERÓ-MUÑIZ M, MEUNIER C L, HOLST S, et al, 2016. Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment[J]. Marine Biology, 163(9): 185.
doi: 10.1007/s00227-016-2958-z |
[24] |
AL-HORANI F A, AL-MOGHRABI S M, DE BEER D, 2003. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis[J]. Marine Biology, 142(3): 419-426.
doi: 10.1007/s00227-002-0981-8 |
[25] |
BAUMANN H, WALLACE R B, TAGLIAFERRI T, et al, 2015. Large natural pH, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales[J]. Estuaries and Coasts, 38(1): 220-231.
doi: 10.1007/s12237-014-9800-y |
[26] |
BAUMANN H, SMITH E M, 2018. Quantifying metabolically driven pH and oxygen fluctuations in US Nearshore Habitats at diel to interannual time scales[J]. Estuaries and Coasts, 41(4): 1102-1117.
doi: 10.1007/s12237-017-0321-3 |
[27] |
BREITBURG D, LEVIN L A, OSCHLIES A, et al, 2018. Declining oxygen in the global ocean and coastal waters[J]. Science, 359(6371): eaam7240.
doi: 10.1126/science.aam7240 |
[28] |
CLARK H R, GOBLER C J, 2016. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves[J]. Marine Ecology Progress Series, 558: 1-14.
doi: 10.3354/meps11852 |
[29] |
CROSS E L, MURRAY C S, BAUMANN H, 2019. Diel and tidal pCO2 × O2 fluctuations provide physiological refuge to early life stages of a coastal forage fish[J]. Scientific Reports, 9(1): 18146.
doi: 10.1038/s41598-019-53930-8 |
[30] |
DAVIS A R, COLEMAN D, BROAD A, et al, 2013. Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation[J]. PLoS One, 8(2): e55939
doi: 10.1371/journal.pone.0055939 |
[31] |
DEL RIO D, STEWART A J, PELLEGRINI N, 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress[J]. Nutrition, Metabolism and Cardiovascular Diseases, 15(4): 316-328.
pmid: 16054557 |
[32] |
FABRY V J, SEIBEL B A, FEELY R A, et al, 2008. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science, 65(3): 414-432.
doi: 10.1093/icesjms/fsn048 |
[33] |
GEDAN K B, ALTIERI A H, FELLER I, et al, 2017. Community composition in mangrove ponds with pulsed hypoxic and acidified conditions[J]. Ecosphere, 8(12): e02053.
doi: 10.1002/ecs2.2053 |
[34] |
GOBLER C J, BAUMANN H, 2016. Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life[J]. Biology Letters, 12(5): 20150976.
doi: 10.1098/rsbl.2015.0976 |
[35] |
HEINS A, SÖTJE I, HOLST S, 2018. Assessment of investigation techniques for scyphozoan statoliths, with focus on early development of the jellyfish Sanderia malayensis[J]. Marine Ecology Progress Series, 591: 37-56.
doi: 10.3354/meps12292 |
[36] |
KEPPEL A G, BREITBURG D L, WIKFORS G H, et al, 2015. Effects of co-varying diel-cycling hypoxia and pH on disease susceptibility in the eastern oyster Crassostrea virginica[J]. Marine Ecology Progress Series, 538: 169-183.
doi: 10.3354/meps11479 |
[37] |
KIKKAWA T, MINOWA Y, NAKAMURA Y, et al, 2010. Swimming inhibition by elevated pCO2 in ephyrae of the scyphozoan jellyfish, Aurelia[J]. Plankton and Benthos Research, 5(3): 119-122.
doi: 10.3800/pbr.5.119 |
[38] |
LUCAS C H, GRAHAM W M, WIDMER C, 2012. Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations[J]. Advances in Marine Biology, 63: 133-196.
doi: 10.1016/B978-0-12-394282-1.00003-X pmid: 22877612 |
[39] | MAGNADÓTTIR B, 2006. Innate immunity of fish (overview)[J]. Fish & Shellfish Immunology, 20(2): 137-151. |
[40] |
MARQUES J A, ABRANTES D P, MARANGONI L F, et al, 2020. Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: A multiple biomarker approach[J]. Environmental Pollution, 257: 113572.
doi: 10.1016/j.envpol.2019.113572 |
[41] |
MARTÍNEZ-ÁLVAREZ R M, MORALES A E, SANZ A, 2005. Antioxidant defenses in fish: Biotic and abiotic factors[J]. Reviews in Fish Biology and Fisheries, 15(1-2): 75-88.
doi: 10.1007/s11160-005-7846-4 |
[42] |
MORABITO R, MARINO A, LAUF P K, et al, 2013. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca[J]. Cellular Physiology and Biochemistry, 32(S1): 77-85.
doi: 10.1159/000356629 |
[43] |
ORR J C, FABRY V J, AUMONT O, et al, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 437(7059): 681-686.
doi: 10.1038/nature04095 |
[44] |
PIPE R K, 1990. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis[J]. The Histochemical Journal, 22(11): 595-603.
doi: 10.1007/BF01072941 |
[45] | PURCELL J E, BREITBURG D L, DECKER M B, et al, 2001. Pelagic cnidarians and ctenophores in low dissolved oxygen environments: A review[M]// RABALAISN N, TURNERR E. Coastal hypoxia:consequences for living resources and ecosystems, volume 58. Washington: American Geophysical Union: 77-100. |
[46] |
SHANG YUEYONG, WANG XINGHUO, DENG YUEWEN, et al, 2020. Diel-cycling seawater acidification and hypoxia impair the physiological and growth performance of marine mussels[J]. Science of the Total Environment, 722: 138001.
doi: 10.1016/j.scitotenv.2020.138001 |
[47] |
SHI HUAHONG, SUI YUNXIA, WANG XIAORONG, et al, 2005. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 140(1): 115-121.
doi: 10.1016/j.cca.2005.01.009 |
[48] |
SIDDIQUI S, BIELMYER-FRASER G K, 2015. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure[J]. Aquatic Toxicology, 167: 228-239.
doi: 10.1016/j.aquatox.2015.08.012 |
[49] |
TREIBLE L M, PITT K A, KLEIN S G, et al, 2018. Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments[J]. Marine Ecology Progress Series, 591: 129-139.
doi: 10.3354/meps12298 |
[50] |
VALKO M, LEIBFRITZ D, MONCOL J, et al, 2007. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry & Cell Biology, 39(1): 44-84.
doi: 10.1016/j.biocel.2006.07.001 |
[51] |
WINANS A K, PURCELL J E, 2010. Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata[J]. Hydrobiologia, 645(1): 39-52.
doi: 10.1007/s10750-010-0224-9 |
[52] |
WU R S S, 2002. Hypoxia: from molecular responses to ecosystem responses[J]. Marine Pollution Bulletin, 45(1-12): 35-45.
pmid: 12398365 |
[1] | YANG Fangfang, XIAO Zhiliang, WEI Zhangliang, HUANG Yi, LONG Lijuan. The effects of ocean acidification and warming on the growth and calcification in coralline alga Porolithon cf. onkodes [J]. Journal of Tropical Oceanography, 2023, 42(1): 87-97. |
[2] | LIU Su-min, YANG Ding-tian. Spectral features of Acropora austera impacted by ocean acidification [J]. Journal of Tropical Oceanography, 2014, 33(6): 41-47. |
|