[1] |
曹睿星, 官文江, 高峰, 等, 2023. 基于最大熵和栖息地指数模型预测东、黄海日本鲭渔场分布[J]. 海洋学报, 45(9): 72-81.
|
|
CAO RUIXING, GUAN WENJIANG, GAO FENG, et al, 2023. Prediction of chub mackerel fishing ground distribution in the East China Sea and Yellow Sea based on maximum entropy model and habitat suitability index model[J]. Haiyang Xuebao, 45(9): 72-81 (in Chinese with English abstract).
|
[2] |
杜萍, 陈全震, 李尚鲁, 等, 2020. 东海带鱼资源变动及其栖息地驱动因子研究进展[J]. 广东海洋大学学报, 40(1): 126-132.
|
|
DU PING, CHEN QUANZHEN, LI SHANGLU, et al, 2020. Advances in the Trichiurus lepturus changes and habitat driving factors in the East China Sea[J]. Journal of Guangdong Ocean University, 40(1): 126-132 (in Chinese with English abstract).
|
[3] |
刘星雨, 2022. 气候变化对中国近海主要经济鱼类潜在适宜生境影响的研究[D]. 舟山: 浙江海洋大学.
|
|
LIU XINGYU, 2022. Study on the impacts of climate change on the potential suitable habitat of major commercial fish in offshore China[D]. Zhoushan: Zhejiang Ocean University (in Chinese with English abstract).
|
[4] |
马腾龙, 万亿, 吴萍娟, 等, 2024. 环境因素对浮游植物生长及群落结构的影响[J]. 环境保护前沿, (3): 459-466.
|
|
MA TENGLONG, WAN YI, WU PINGJUAN, et al, 2024. Effects of environmental factors on phytoplankton growth and community structure[J]. Advances in Environmental Protection, (3): 459-466 (in Chinese with English abstract).
|
[5] |
齐国君, 陈婷, 高燕, 等, 2015. 基于Maxent的大洋臀纹粉蚧和南洋臀纹粉蚧在中国的适生区分析[J]. 环境昆虫学报, 37(2): 219-223.
|
|
QI GUOJUN, CHEN TING, GAO YAN, et al, 2015. Potential geographic distribution of Planococcus minor and P. lilacinus in China based on Maxent[J]. Journal of Environmental Entomology, 37(2): 219-223 (in Chinese with English abstract).
|
[6] |
孙述好, 黄紫薇, 胡男, 等, 2024. 大麻哈鱼幼鱼对温度、盐度、pH及溶解氧耐受性的研究[J]. 黑龙江水产, 43(2): 140-143.
|
|
SUN SHUHAO, HUANG ZIWEI, HU NAN, et al, 2024. Studies on temperature, salinity, pH and dissolved oxygen tolerance of Oncorhynchus keta smolts[J]. Northern Chinese Fisheries, 43(2): 140-143 (in Chinese with English abstract).
|
[7] |
武晓宇, 董世魁, 刘世梁, 等, 2018. 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J]. 生物多样性, 26(2): 138-148.
|
|
WU XIAOYU, DONG SHIKUI, LIU SHILIANG, et al, 2018. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model[J]. Biodiversity Science, 26(2): 138-148 (in Chinese with English abstract).
|
[8] |
张曼, 2022. 北部湾带鱼资源状况研究[D]. 上海: 上海海洋大学.
|
|
ZHANG MAN, 2022. Study on the stock of Trichiurus haumela in the Beibu Gulf[D]. Shanghai: Shanghai Ocean University (in Chinese with English abstract).
|
[9] |
张曼, 王雪辉, 蔡研聪, 等, 2022. 北部湾带鱼空间聚散变化特征[J]. 中国水产科学, 29(11): 1647-1658.
|
|
ZHANG MAN, WANG XUEHUI, CAI YANCONG, et al, 2022. Spatial aggregation and dispersion characteristics of Trichiurus haumela in the Beibu Gulf, northern South China Sea[J]. Journal of Fishery Sciences of China, 29(11): 1647-1658 (in Chinese with English abstract).
|
[10] |
张鹏, 2020. 阿曼湾海域带鱼生物学特性、矢耳石形态和微化学研究[D]. 上海: 上海海洋大学.
|
|
ZHANG PENG, , 2020. Study on biological characteristics, sagittal otolith morphology and microchemistry of Trichiurus lepturus in the gulf of Oman[D]. Shanghai: Shanghai Ocean University (in Chinese with English abstract).
|
[11] |
张旭, 张佳, 王婕, 等, 2023. 温度和光照周期对硬头鳟幼鱼生长、生理及行为的影响[J]. 大连海洋大学学报, 38(2): 251-258.
|
|
ZHANG XU, ZHANG JIA, WANG JIE, et al, 2023. Effects of temperature and photoperiod on growth, physiology and behavior of juvenile steelhead trout (Oncorhynchus mykiss)[J]. Journal of Dalian Ocean University, 38(2): 251-258 (in Chinese with English abstract).
|
[12] |
AL NAHDI A, GARCIA DE LEANIZ C, KING A J, 2016. Spatio-temporal variation in length-weight relationships and condition of the ribbonfish Trichiurus lepturus (Linnaeus, 1758): implications for fisheries management[J]. PLoS One, 11(8): e0161989.
|
[13] |
ALABIA I D, SAITOH S I, IGARASHI H, et al, 2016. Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific[J]. ICES Journal of Marine Science, 73(5): 1343-1356.
|
[14] |
ANTÃO L H, BATES A E, BLOWES S A, et al, 2020. Temperature-related biodiversity change across temperate marine and terrestrial systems[J]. Nature Ecology & Evolution, 4(7): 927-933.
|
[15] |
ASSIS J, BEJARANO S J F, SALAZAR V W, et al, 2024. Bio-ORACLE v3.0. Pushing marine data layers to the CMIP6 Earth System Models of climate change research[J]. Global Ecology and Biogeography, 33(4): e13813.
|
[16] |
BLOWES S A, SUPP S R, ANTÃO L H, et al, 2019. The geography of biodiversity change in marine and terrestrial assemblages[J]. Science, 366(6463): 339-345.
|
[17] |
BRIERLEY A S, KINGSFORD M J, 2009. Impacts of climate change on marine organisms and ecosystems[J]. Current Biology, 19(14): R602-R614.
|
[18] |
BRODERSEN J, RODRIGUEZ-GIL J L, JÖNSSON M, et al, 2011. Temperature and resource availability may interactively affect over-wintering success of juvenile fish in a changing climate[J]. PLoS One, 6(10): e24022.
|
[19] |
CHAKRABORTY K, JOSEPH D, CHAKKALAKAL S J, et al, 2016. Interannual and seasonal dynamics in lipidic signatures of Trichiurus lepturus[J]. Journal of Aquatic Food Product Technology, 25(6): 811-823.
|
[20] |
CHIOU W D, CHEN C Y, WANG CHIMING, et al, 2006. Food and feeding habits of ribbonfish Trichiurus lepturus in coastal waters of south-western Taiwan[J]. Fisheries Science, 72(2): 373-381.
|
[21] |
COTTIER-COOK E J, BENTLEY-ABBOT J, COTTIER F R, et al, 2024. Horizon scanning of potential threats to high-Arctic biodiversity, human health and the economy from marine invasive alien species: a svalbard case study[J]. Global Change Biology, 30(1): e17009.
|
[22] |
ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697.
|
[23] |
FREE C M, THORSON J T, PINSKY M L, et al, 2019. Impacts of historical warming on marine fisheries production[J]. Science, 363(6430): 979-983.
|
[24] |
FROESE R, PAULY D, (2024-10-01)[2025-02-06]. FishBase[DB/OL]. https://www.fishbase.se/summary/Trichiurus-lepturus.html.
|
[25] |
GILLOOLY J F, BROWN J H, WEST G B, et al, 2001. Effects of size and temperature on metabolic rate[J]. Science, 293(5538): 2248-2251.
|
[26] |
HANLEY J A, MCNEIL B J, 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 143(1): 29-36.
|
[27] |
HAUSFATHER Z, PETERS G P, 2020. Emissions - the ‘business as usual’ story is misleading[J]. Nature, 577(7792): 618-620.
|
[28] |
HOLSMAN K K, HAYNIE A C, HOLLOWED A B, et al, 2020. Ecosystem-based fisheries management forestalls climate-driven collapse[J]. Nature Communications, 11(1): 4579.
|
[29] |
KRAMER-SCHADT S, NIEDBALLA J, PILGRIM J D, et al, 2013. The importance of correcting for sampling bias in MaxEnt species distribution models[J]. Diversity and Distributions, 19(11): 1366-1379.
|
[30] |
LI JUNJUN, FAN GANG, HE YANG, 2020. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis[J]. Science of The Total Environment, 698: 134141.
|
[31] |
LIU LEI, ZHANG YUANYUAN, HUANG YI, et al, 2022. Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios[J]. Environmental Science and Pollution Research International, 29(15): 22237-22250.
|
[32] |
OHLBERGER J, 2013. Climate warming and ectotherm body size-from individual physiology to community ecology[J]. Functional Ecology, 27(4): 991-1001.
|
[33] |
PANDIT S N, MAITLAND B M, PANDIT L K, et al, 2017. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus)[J]. Science of The Total Environment, 598: 1-11.
|
[34] |
PHILLIPS S J, DUDÍK M, 2008. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation[J]. Ecography, 31(2): 161-175.
|
[35] |
PINSKY M L, WORM B, FOGARTY M J, et al, 2013. Marine taxa track local climate velocities[J]. Science, 341(6151): 1239-1242.
|
[36] |
PITCHAIKANI J S, LIPTON A P, 2016. Nutrients and phytoplankton dynamics in the fishing grounds off Tiruchendur coastal waters, Gulf of Mannar, India[J]. SpringerPlus, 5(1): 1405.
|
[37] |
PÖRTNER H O, PECK M A, 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding[J]. Journal of Fish Biology, 77(8): 1745-1779.
|
[38] |
RODRIGUEZ-BURGOS A M, BRICEÑO-ZULUAGA F J, ÁVILA JIMÉNEZ J L, et al, 2022. The impact of climate change on the distribution of Sphyrna lewini in the tropical eastern Pacific[J]. Marine Environmental Research, 180: 105696.
|
[39] |
SHARIFIAN S, MORTAZAVI M S, MOHEBBI NOZAR S L, 2024. Projected habitat preferences of commercial fish under different scenarios of climate change[J]. Scientific Reports, 14(1): 10177.
|
[40] |
SHI XINYU, LYU ZHANHUI, WANG ZHONGMING, et al, 2024. Distribution characteristics of Trichiurus japonicus and their relationships with environmental factors in the East China Sea and south-central Yellow Sea[J]. Fishes, 9(11): 439.
|
[41] |
SHI YONGCHUANG, KANG BO, FAN WEI, et al, 2023. Spatio-temporal variations in the potential habitat distribution of Pacific sardine (Sardinops sagax) in the northwest Pacific Ocean[J]. Fishes, 8(2): 86.
|
[42] |
STOCK C A, JOHN J G, RYKACZEWSKI R R, et al, 2017. Reconciling fisheries catch and ocean productivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(8): E1441-E1449.
|
[43] |
SUNDBY S, KRISTIANSEN T, 2015. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans[J]. PLoS One, 10(10): e0138821.
|
[44] |
TYBERGHEIN L, VERBRUGGEN H, PAULY K, et al, 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling[J]. Global Ecology and Biogeography, 21(2): 272-281.
|
[45] |
VALAVI R, GUILLERA-ARROITA G, LAHOZ-MONFORT J J, et al, 2022. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code[J]. Ecological Monographs, 92(1): e01486.
|
[46] |
WANG DONGLIANG, YAO LIJUN, YU JING, et al, 2021a. Response to environmental factors of spawning ground in the Pearl River estuary, China[J]. Journal of Marine Science and Engineering, 9(7): 763.
|
[47] |
WANG KAILI, LI JIAJUN, XU SHANNAN, et al, 2023. Stable isotopic and stomach content analyses reveal changes in the trophic level and feeding habit of large-head hairtail (Trichiurus lepturus) in the northern South China Sea[J]. Science of The Total Environment, 896: 165313.
|
[48] |
WANG YUYU, CHAO BIXIAO, DONG PENG, et al, 2021b. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models[J]. Science of The Total Environment, 788: 147914.
|
[49] |
WEI JI, GAO G, WEI JIUFENG, 2021. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt[J]. Insects, 12(4): 347.
|
[50] |
XIONG PENGLI, XU YOUWEI, SUN MINGSHUAI, et al, 2023. The current and future seasonal geographic distribution of largehead hairtail Trichiurus japonicus in the Beibu Gulf, South China Sea[J]. Frontiers in Marine Science, 9: 1079590.
|
[51] |
YE XINGZHUANG, ZHAO GUANGHUA, ZHANG MINGZHU, et al, 2020. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period[J]. Forests, 11(4): 434.
|
[52] |
ZHANG HUA, SONG JINYUE, ZHAO HAOXIANG, et al, 2021. Predicting the distribution of the invasive species Leptocybe invasa: combining MaxEnt and geodetector models[J]. Insects, 12(2): 92.
|
[53] |
ZHU GENGPING, BU WENJUN, GAO YUBAO, et al, 2012. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys)[J]. PLoS One, 7(2): e31246.
|