Journal of Tropical Oceanography ›› 2021, Vol. 40 ›› Issue (3): 57-68.doi: 10.11978/YG2020005CSTR: 32234.14.YG2020005
• Review • Previous Articles Next Articles
XU Changsan1,2(), SONG Xiangzhou2(
), QI Yiquan2
Received:
2020-11-11
Revised:
2021-01-12
Online:
2021-05-10
Published:
2021-01-26
Contact:
SONG Xiangzhou
E-mail:xcs0576@126.com;xzsong@hhu.edu.cn
Supported by:
CLC Number:
XU Changsan, SONG Xiangzhou, QI Yiquan. On the mechanisms behind diurnal variations in air-sea turbulent heat fluxes under different boundary layer stability[J].Journal of Tropical Oceanography, 2021, 40(3): 57-68.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 2
A simulation experiment concerning the influences of heat fluxes on wind-driven currents (Ide et al, 2016). The color indicates the wind-driven currents at different times of the day, and the vertical and horizontal coordinates represent the dimensionless velocities, respectively. U* is unit of normalized speed. Blue circle denotes approximate range of speed factor and deflection angle for winter."
Fig. 5
Daily variations in air-sea turbulent heat fluxes observed by the operational buoys of the Ministry of Natural Resources (38o12′N, 121o06′E) in 2016 (Song, 2020). (a) and (b) denote the diurnal variations in latent and sensible heat in June; (c) and (d) denote the diurnal variations in November"
Fig. 9
A schematic diagram of buoy locations (a) and observation times (b) in global oceans. A is the OOI Southern Ocean buoy (purple). B-G and I are global tropical buoy observation arrays. H is the tropical monsoon observation buoy of the MNR (black). L and M are offshore buoys and platforms in China. J and K are USA NOAA flux observation buoys."
[1] | 陈大可, 雷小途, 王伟, 等, 2013. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 28(10):1077-1086. |
CHEN DAKE, LEI XIAOTU, WANG WEI, et al, 2013. Upper ocean response and feedback mechanisms to typhoon[J]. Advances in Earth Science, 28(10):1077-1086 (in Chinese with English abstract). | |
[2] | 盛裴轩, 毛节泰, 李建国, 等, 2013. 大气物理学[M]. 2版. 北京: 北京大学出版社. |
[3] | 孙秀军, 王雷, 桑宏强, 2019. “黑珍珠”波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 27(5):562-569. |
SUN XIUJUN, WANG LEI, SANG HONGQIANG, 2019. Application of wave glider “Black Pearl” to typhoon observation in South China Sea[J]. Journal of Unmanned Undersea Systems, 27(5):562-569 (in Chinese with English abstract). | |
[4] | ALLEN M R, INGRAM W J, 2002. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 419(6903):228-232. |
[5] |
ANDREAS E L, 2004. Spray stress revisited[J]. Journal of Physical Oceanography, 34(6):1429-1440.
doi: 10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2 |
[6] |
BERRY D I, KENT E C, 2009. A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates[J]. Bulletin of the American Meteorological Society, 90(5):645-656.
doi: 10.1175/2008BAMS2639.1 |
[7] |
BOER G J, 1993. Climate change and the regulation of the surface moisture and energy budgets[J]. Climate Dynamics, 8(5):225-239.
doi: 10.1007/BF00198617 |
[8] |
BOURRAS D, CAMBRA R, MARIÉ L, et al, 2019. Air-sea turbulent fluxes from a wave-following platform during six experiments at sea[J]. Journal of Geophysical Research: Oceans, 124(6):4290-4321.
doi: 10.1029/2018JC014803 |
[9] |
CAYAN D R, 1992. Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature[J]. Journal of Physical Oceanography, 22(8):859-881.
doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2 |
[10] |
CLAYSON C A, EDSON J B, 2019. Diurnal surface flux variability over western boundary currents[J]. Geophysical Research Letters, 46(15):9174-9182.
doi: 10.1029/2019GL082826 |
[11] |
CRONIN M F, GENTEMANN C L, EDSON J, et al, 2019. Air-sea fluxes with a focus on heat and momentum[J]. Frontiers in Marine Science, 6:430.
doi: 10.3389/fmars.2019.00430 |
[12] |
DEMOTT C A, KLINGAMAN N P, WOOLNOUGH S J, 2015. Atmosphere-ocean coupled processes in the Madden-Julian oscillation[J]. Reviews of Geophysics, 53(4):1099-1154.
doi: 10.1002/rog.v53.4 |
[13] |
DONG SHENFU, GILLE S T, SPRINTALL J, 2007. An assessment of the southern ocean mixed layer heat budget[J]. Journal of Climate, 20(17):4425-4442.
doi: 10.1175/JCLI4259.1 |
[14] |
EDSON J B, JAMPANA V, WELLER R A, et al, 2013. On the exchange of momentum over the open ocean[J]. Journal of Physical Oceanography, 43(8):1589-1610.
doi: 10.1175/JPO-D-12-0173.1 |
[15] |
EMANUEL K A, 1987. An air-sea interaction model of intraseasonal oscillations in the tropics[J]. Journal of the Atmospheric Sciences, 44(16):2324-2340.
doi: 10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2 |
[16] | FAIRALL C W, BRADLEY E F, ROGERS D P, et al, 1996. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment[J]. Journal of Geophysical Research: Oceans, 101(C2):3747-3764. |
[17] | FENG MING, DUAN YONGLIANG, WIJFFELS S, et al, 2020. Tracking air-sea exchange and upper-ocean variability in the Indonesian-Australian Basin during the onset of the 2018/19 Australian summer monsoon[J]. Bulletin of the American Meteorological Society, 101(8):1397-1412 |
[18] |
GELARO R, MCCARTY W, SUÁREZ M J, et al, 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 30(14):5419-5454.
doi: 10.1175/JCLI-D-16-0758.1 |
[19] |
GIGLIO D, GILLE S T, SUBRAMANIAN A C, et al, 2017. The role of wind gusts in upper ocean diurnal variability[J]. Journal of Geophysical Research: Oceans, 122(9):7751-7764.
doi: 10.1002/2017JC012794 |
[20] |
GROSSMAN R L, BETTS A K, 1990. Air-sea interaction during an extreme cold air outbreak from the eastern coast of the United States[J]. Monthly Weather Review, 118(2):324-342.
doi: 10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2 |
[21] |
HELD I M, SODEN B J, 2006. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 19(21):5686-5699.
doi: 10.1175/JCLI3990.1 |
[22] | HERSBACH H, BELL W, BERRISFORD P, et al, 2019. Global reanalysis: goodbye ERA-Interim, hello ERA5[EB/OL]. ECMWF Newsletter, 159:17-24. |
[23] |
HONG SONGYOU, KANAMITSU M, KIM J E, et al, 2012. Effects of diurnal cycle on a simulated Asian summer monsoon[J]. Journal of Climate, 25(24):8394-8408.
doi: 10.1175/JCLI-D-12-00069.1 |
[24] |
HUGHES K G, MOUM J N, SHROYER E L, 2020. Evolution of the velocity structure in the diurnal warm layer[J]. Journal of Physical Oceanography, 50(3):615-631.
doi: 10.1175/JPO-D-19-0207.1 |
[25] |
IDE Y, YOSHIKAWA Y, 2016. Effects of diurnal cycle of surface heat flux on wind-driven flow[J]. Journal of Oceanography, 72(2):263-280.
doi: 10.1007/s10872-015-0328-y |
[26] | KESSLER W S, WIJFFELS S E, CRAVATTE S, et al, 2019. Second Report of TPOS 2020[R]. GOOS-234. |
[27] |
LARGE W G, CARON J M, 2015. Diurnal cycling of sea surface temperature, salinity, and current in the CESM coupled climate model[J]. Journal of Geophysical Research: Oceans, 120(5):3711-3729.
doi: 10.1002/2014JC010691 |
[28] |
LI QING, FOX-KEMPER B, 2017. Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer[J]. Journal of Physical Oceanography, 47(12):2863-2886.
doi: 10.1175/JPO-D-17-0085.1 |
[29] |
LIU W T, KATSAROS K B, BUSINGER J A, 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences, 36(9):1722-1735.
doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2 |
[30] |
LUO JINGJIA, MASSON S, ROECKNER E, et al, 2005. Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics[J]. Journal of Climate, 18(13):2344-2360.
doi: 10.1175/JCLI3404.1 |
[31] |
MATSUNO T, 1966. Quasi-geostrophic motions in the equatorial area[J]. Journal of the Meteorological Society of Japan. Ser. II, 44(1):25-43.
doi: 10.2151/jmsj1965.44.1_25 |
[32] | MONIN A S, OBUKHOV A M, 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Contrib Geophys Inst Acad USSR, 24(151):163-187. |
[33] |
MOULIN A J, MOUM J N, SHROYER E L, 2018. Evolution of turbulence in the diurnal warm layer[J]. Journal of Physical Oceanography, 48(2):383-396.
doi: 10.1175/JPO-D-17-0170.1 |
[34] |
PACANOWSKI R C, 1987. Effect of equatorial currents on surface stress[J]. Journal of Physical Oceanography, 17(6):833-838.
doi: 10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2 |
[35] |
PEDLOSKY J, ROBBINS P, 1991. The role of finite mixed-layer thickness in the structure of the ventilated thermocline[J]. Journal of Physical Oceanography, 21(7):1018-1031.
doi: 10.1175/1520-0485(1991)021<1018:TROFML>2.0.CO;2 |
[36] |
PLAGGE A M, VANDEMARK D, CHAPRON B, 2012. Examining the impact of surface currents on satellite scatterometer and altimeter ocean winds[J]. Journal of Atmospheric and Oceanic Technology, 29(12):1776-1793.
doi: 10.1175/JTECH-D-12-00017.1 |
[37] | PRICE J F, WELLER R A, PINKEL R, 1986. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing[J]. Journal of Geophysical Research: Oceans, 91(C7):8411-8427. |
[38] |
RENFREW I A, MOORE G W K, 1999. An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air-sea interaction[J]. Monthly Weather Review, 127(10):2379-2394.
doi: 10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2 |
[39] |
REYNOLDS R W, SMITH T M, LIU CHUNYING, et al, 2007. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 20(22):5473-5496.
doi: 10.1175/2007JCLI1824.1 |
[40] |
RILEY DELLARIPA E M, MALONEY E D, 2015. Analysis of MJO wind-flux feedbacks in the Indian Ocean using RAMA buoy observations[J]. Journal of the Meteorological Society of Japan. Ser. II, 93A:1-20.
doi: 10.2151/jmsj.2015-021 |
[41] | SCHUDLICH R R, PRICE J F, 1992. Diurnal cycles of current, temperature, and turbulent dissipation in a model of the equatorial upper ocean[J]. Journal of Geophysical Research: Oceans, 97(C4):5409-5422. |
[42] |
SEO H, SUBRAMANIAN A C, MILLER A J, et al, 2014. Coupled impacts of the diurnal cycle of sea surface temperature on the Madden-Julian Oscillation[J]. Journal of Climate, 27(22):8422-8443.
doi: 10.1175/JCLI-D-14-00141.1 |
[43] |
SHI RUI, ZENG LILI, CHEN JU, et al, 2015. Observation and numerical simulation of the marine meteorology elements and air-sea fluxes at Yongxing Island in September 2013[J]. Aquatic Ecosystem Health and Management, 18(4):394-402.
doi: 10.1080/14634988.2015.1108822 |
[44] |
SONG JINBAO, FAN WEI, LI SHUANG, et al, 2015. Impact of surface waves on the steady near-surface wind profiles over the ocean[J]. Boundary-Layer Meteorology, 155(1):111-127.
doi: 10.1007/s10546-014-9983-6 |
[45] |
SONG XIANGZHOU, 2020. The importance of relative wind speed in estimating air-sea turbulent heat fluxes in bulk formulas: examples in the Bohai Sea[J]. Journal of Atmospheric and Oceanic Technology, 37(4):589-603.
doi: 10.1175/JTECH-D-19-0091.1 |
[46] | SONG XIANGZHOU, CHEN ZHI, WANG HUA, et al, 2018. China’s vision towards the Tropical Pacific Observing System (TPOS) 2020[J]. CLIVAR Exchanges, No. 75:6-12. |
[47] | SONG XIANGZHOU, NING CHUNLIN, DUAN YONGLIANG, et al, 2021. Observed extreme air-sea heat flux variations during three tropical cyclones in the tropical southeastern Indian Ocean[J/OL]. Journal of Climate [2020-11-11]. https://journals.ametsoc.org/downloadpdf/journals/clim/aop/JCLI-D-20-0170.1/JCLI-D-20-0170.1.pdf |
[48] |
SONG XIANGZHOU, YU LISAN, 2012. High-latitude contribution to global variability of air-sea sensible heat flux[J]. Journal of Climate, 25(10):3515-3531.
doi: 10.1175/JCLI-D-11-00028.1 |
[49] |
SPALL M A, 1992. Cooling spirals and recirculation in the subtropical gyre[J]. Journal of Physical Oceanography, 22(5):564-571.
doi: 10.1175/1520-0485(1992)022<0564:CSARIT>2.0.CO;2 |
[50] |
STOMMEL H, SCHOTT F, 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data[J]. Deep Sea Research, 24(3):325-329.
doi: 10.1016/0146-6291(77)93000-4 |
[51] |
VÅGE K, PICKART R S, THIERRY V, et al, 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007-2008[J]. Nature Geoscience, 2(1):67-72.
doi: 10.1038/ngeo382 |
[52] |
VANDEMARK D, EDSON J B, CHARPRON B, 1997. Altimeter estimation of sea surface wind stress for light to moderate winds[J]. Journal of Atmospheric and Oceanic Technology, 14(3):716-722.
doi: 10.1175/1520-0426(1997)014<0716:AEOSSW>2.0.CO;2 |
[53] |
WANG XIN, ZHANG RONGWANG, HUANG JIAN, et al, 2017. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea[J]. Journal of Geophysical Research: Oceans, 122(6):5088-5104.
doi: 10.1002/jgrc.v122.6 |
[54] |
WEIHS R R, BOURASSA M A, 2014. Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes[J]. Journal of Geophysical Research: Oceans, 119(7):4101-4123.
doi: 10.1002/2013JC009489 |
[55] |
WELLER R A, FARRAR J T, BUCKLEY J, et al, 2016. Air-sea interaction in the Bay of Bengal[J]. Oceanography, 29(2):28-37.
doi: 10.5670/oceanog |
[56] |
WU LIN, CHENG XUELING, ZENG QINGCUN, et al, 2017. On the upward flux of sea-spray spume droplets in high wind conditions[J]. Journal of Geophysical Research: Atmospheres, 122(11):5976-5987.
doi: 10.1002/jgrd.v122.11 |
[57] |
XUE HUIJIE, BANE J M, GOODMAN L M, 1995. Modification of the Gulf Stream through strong air-sea interactions in winter: Observations and numerical simulations[J]. Journal of Physical Oceanography, 25(4):533-557.
doi: 10.1175/1520-0485(1995)025<0533:MOTGST>2.0.CO;2 |
[58] |
YU LISAN, 2007. Global variations in oceanic evaporation (1958-2005): The role of the changing wind speed[J]. Journal of Climate, 20(21):5376-5390.
doi: 10.1175/2007JCLI1714.1 |
[59] |
YU LISAN, 2019. Global air-sea fluxes of heat, fresh water, and momentum: energy budget closure and unanswered questions[J]. Annual Review of Marine Science, 11(1):227-248.
doi: 10.1146/annurev-marine-010816-060704 |
[60] |
YU LISAN, WELLER R A, 2007. Objectively Analyzed air-sea heat Fluxes for the global ice-free oceans (1981-2005)[J]. Bulletin of the American Meteorological Society, 88(4):527-539.
doi: 10.1175/BAMS-88-4-527 |
[61] |
YU YANG, CHEN SHUHUA, TSENG Y H, et al, 2020. Importance of diurnal forcing on the summer salinity variability in the East China Sea[J]. Journal of Physical Oceanography, 50(3):633-653.
doi: 10.1175/JPO-D-19-0200.1 |
[62] |
ZENG LILI, WANG DONGXIAO, 2009. Intraseasonal variability of latent-heat flux in the South China Sea[J]. Theoretical and Applied Climatology, 97(1-2):53-64.
doi: 10.1007/s00704-009-0131-z |
[63] |
ZHANG GUANGJUN, MCPHADEN M J, 1995. The relationship between sea surface temperature and latent heat flux in the equatorial Pacific[J]. Journal of Climate, 8(3):589-605.
doi: 10.1175/1520-0442(1995)008<0589:TRBSST>2.0.CO;2 |
[64] |
ZHANG TING, SONG JINBAO, 2018. Effects of sea-surface waves and ocean spray on air-sea momentum fluxes[J]. Advances in Atmospheric Sciences, 35(4):469-478.
doi: 10.1007/s00376-017-7101-7 |
[1] | SHI Rui, CHEN Ju, HE Yunkai, SUI Dandan, SHU Yeqiang. A case study of the influence of the cold surge and ocean front on the evolution of atmospheric ducts in the northwestern South China Sea [J]. Journal of Tropical Oceanography, 2022, 41(5): 29-42. |
[2] | LI Zhuo, LI Weibiao, ZHANG Aoqi. Analysis of diurnal variation characteristics of precipitation over South China before typhoon landfall [J]. Journal of Tropical Oceanography, 2022, 41(2): 26-37. |
[3] | ZHOU Xuan, LI Ziqiang, AN Yuzhu, ZHANG Yaowen, YANG Xiaofeng. Surface current characteristics in the central eastern sea area of Hainan Island detected by high-frequency surface wave radar [J]. Journal of Tropical Oceanography, 2021, 40(2): 103-111. |
[4] | Qian YANG, Chaoran CUI, Yu ZHANG, Zhiyu LIU, Yuping GUAN, Ruixin HUANG. Spatial patterns and secular trends of wind energy input into the surface layer in the South China Sea based on SODA reanalysis [J]. Journal of Tropical Oceanography, 2018, 37(6): 41-48. |
[5] | ZHU Yuhang, ZENG Xuezhi, PENG Shiqiu. Assimilation experiments of high frequency ground wave radar current in the northern coast of the South China Sea [J]. Journal of Tropical Oceanography, 2016, 35(6): 10-18. |
[6] | LIU Ke-feng, JIANG Guo-rong, CHEN Yi-de, YAO Jia, SHENG Chun. Analysis of upper-ocean surface currents of the South China Sea derived from satellite-tracked drifter data [J]. Journal of Tropical Oceanography, 2014, 33(5): 13-21. |
[7] | ZHU Da-yong, LI Yan, GUO Xiao-gang, ZHANG You-quan. Review of studies on the validation of surface currents measured by high-frequency radar [J]. Journal of Tropical Oceanography, 2013, 32(4): 1-7. |
|