[1] |
黄文明, 尹梦丽, 陈煜, 等, 2024. 一株高效同化氨氮霉菌的筛选及其代谢组分析[J]. 微生物学报, 64(1): 161-173.
|
|
HUANG WENMING, YIN MENGLI, CHEN YU, et al, 2024. Screening and metabolomic analysis of a fungal strain efficiently assimilating ammonia nitrogen[J]. Acta Microbiologica Sinica, 64(1): 161-173 (in Chinese with English abstract).
|
[2] |
刘佳慧, 吕红, 林娟, 2023. 一株产低温碱性淀粉酶蕈状芽孢杆菌的分离筛选和发酵优化[J]. 四川大学学报(自然科学版), 60(2): 026001.
|
|
LIU JIAHUI, LÜ HONG, LIN JUAN, 2023. Isolation and screening of psychrophilic and alkaline amylase-producing Bacillus mycoides strain 3F1 and the optimum fermentation for enzyme production[J]. Journal of Sichuan University (Natural Science Edition), 60(2): 026001 (in Chinese with English abstract).
|
[3] |
ABDELSALAM K M, SHALTOUT N A, IBRAHIM H A, et al, 2022. A comparative study of biosynthesized marine natural-product nanoparticles as antifouling biocides[J]. Oceanologia, 64(1): 35-49.
|
[4] |
ALFARO A C, YOUNG T, BOWDEN K, 2014. Neurophysiological control of swimming behaviour, attachment and metamorphosis in black-footed abalone (Haliotis iris) larvae[J]. New Zealand Journal of Marine and Freshwater Research, 48(3): 314-334.
|
[5] |
ALMEIDA J R, CORREIA-DA-SILVA M, SOUSA E, et al, 2017. Antifouling potential of nature-inspired sulfated compounds[J]. Scientific Reports, 7: 42424.
|
[6] |
ATLAS N, UZAIR B, MOVELLAN J, et al, 2023. In vitro activity of novel apramycin-dextran nanoparticles and free apramycin against selected Dutch and Pakistani Klebsiella pneumonia isolates[J]. Heliyon, 9(12): e22821.
|
[7] |
BÁEZ J C, PENNINO M G, ALBO-PUIGSERVER M, et al, 2022. Effects of environmental conditions and jellyfish blooms on small pelagic fish and fisheries from the Western Mediterranean Sea[J]. Estuarine, Coastal and Shelf Science, 264: 107699.
|
[8] |
BELOUSOVA M E, MALOVICHKO Y V, SHIKOV A E, et al, 2021. Dissecting the environmental consequences of Bacillus thuringiensis application for natural ecosystems[J]. Toxins, 13(5): 355.
|
[9] |
BISCOCHO D, COOK J G, LONG J, et al, 2018. GABA is an inhibitory neurotransmitter in the neural circuit regulating metamorphosis in a marine snail[J]. Developmental Neurobiology, 78(7): 736-753.
|
[10] |
BREKHMAN V, MALIK A, HAAS B, et al, 2015. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita[J]. BMC Genomics, 16: 74.
|
[11] |
BURGESS J G, BOYD K G, ARMSTRONG E, et al, 2003. The development of a marine natural product-based antifouling paint[J]. Biofouling, 19(S1): 197-205.
|
[12] |
CAVALCANTI G S, ALKER A T, DELHERBE N, et al, 2020. The influence of bacteria on animal metamorphosis[J]. Annual Review of Microbiology, 74: 137-158.
|
[13] |
CHANDRAMOULI K H, QIAN PEIYYUAN, RAVASI T, 2014. Proteomics insights: proteins related to larval attachment and metamorphosis of marine invertebrates[J]. Frontiers in Marine Science, 1: 52.
|
[14] |
CHANG RUIHENG, YANG LITING, LUO MING, et al, 2021. Deep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae[J]. Scientific Reports, 11(1): 919.
|
[15] |
DELANNOY C M J, HOUGHTON J D R, FLEMING N E C, et al, 2011. Mauve stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum[J]. Aquaculture, 311(1-4): 255-257.
|
[16] |
DIALE M O, KAYITESI E, SEREPA-DLAMINI M H, 2021. Genome in silico and in vitro analysis of the probiotic properties of a bacterial endophyte, Bacillus paranthracis strain MHSD3[J]. Frontiers in Genetics, 12: 672149.
|
[17] |
DICKSCHAT J S, MARTENS T, BRINKHOFF T, et al, 2005. Volatiles released by a Streptomyces species isolated from the North Sea[J]. Chemistry & Biodiversity, 2(7): 837-865.
|
[18] |
DOBRETSOV S, ABED R M M, TEPLITSKI M, 2013. Mini-review: Inhibition of biofouling by marine microorganisms[J]. Biofouling, 29(4): 423-441.
|
[19] |
DOBRETSOV S, XIONG HAIRONG, XU YING, et al, 2007. Novel antifoulants: inhibition of larval attachment by proteases[J]. Marine Biotechnology, 9(3): 388-397.
|
[20] |
DONG ZHIJUN, 2019. Blooms of the moon jellyfish Aurelia: causes, consequences and controls[M]// SHEPPARD C. World seas: an environmental evaluation. 2nd ed. New York: Academic Press: 163-171.
|
[21] |
DONG ZHIJUN, LIU DONGYAN, KEESING J K, 2010. Jellyfish blooms in China: Dominant species, causes and consequences[J]. Marine Pollution Bulletin, 60(7): 954-963.
|
[22] |
DU XINYUE, JIANG YAO, SUN YAWEN, et al, 2023. Biodegradation of Inosine and Guanosine by Bacillus paranthracis YD01[J]. International Journal of Molecular Sciences, 24(19): 14462.
|
[23] |
FENG DANQING, KE CAIHUAN, LU CHANGYI, et al, 2010. The influence of temperature and light on larval pre-settlement metamorphosis: a study of the effects of environmental factors on pre-settlement metamorphosis of the solitary ascidian Styela canopus[J]. Marine and Freshwater Behaviour and Physiology, 43(1): 11-24.
|
[24] |
FRANCO S C, ALDRED N, CRUZ T, et al, 2016. Modulation of gregarious settlement of the stalked barnacle, Pollicipes pollicipes: a laboratory study[J]. Scientia Marina, 80(2): 217-228.
|
[25] |
FRECKELTON M L, NEDVED B T, HADFIELD M G, 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms?[J]. Scientific Reports, 7: 42557.
|
[26] |
GOLD D A, KATSUKI T, LI YANG, et al, 2019. The genome of the jellyfish Aurelia and the evolution of animal complexity[J]. Nature Ecology & Evolution, 3(1): 96-104.
|
[27] |
GUO HUIJUAN, RISCHER M, SPERFELD M, et al, 2017. Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata[J]. Bioorganic and Medicinal Chemistry, 25(22): 6088-6097.
|
[28] |
GUO HUIJUAN, RISCHER M, WESTERMANN M, et al, 2021. Two distinct bacterial biofilm components trigger metamorphosis in the colonial hydrozoan Hydractinia echinata[J]. mBio, 12(3): e0040121.
|
[29] |
HADFIELD M G, 2011. Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites[J]. Annual Review of Marine Science, 3: 453-470.
|
[30] |
HADFIELD M G, FRECKELTON M L, NEDVED B T, 2021. The natural sequence of events in larval settlement and metamorphosis of Hydroides elegans (Polychaeta; Serpulidae)[J]. PLoS One, 16(5): e0249692.
|
[31] |
HE JIAN, WU ZHIWEN, CHEN LIYING, et al, 2021. Adenosine triggers larval settlement and metamorphosis in the mussel Mytilopsis sallei through the ADK-AMPK-FoxO pathway[J]. ACS Chemical Biology, 16(8): 1390-1400.
|
[32] |
HOFMANN D K, NEUMANN R, HENNE K, 1978. Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa)[J]. Marine Biology, 47(2): 161-176.
|
[33] |
HOYER J, KOLAR K, ATHIRA A, et al, 2024. Polymodal sensory perception drives settlement and metamorphosis of Ciona larvae[J]. Current Biology, 34(6): 1168-1182.e7.
|
[34] |
HU XIAOMENG, WANG XIAOYU, PENG LIHUA, et al, 2024. Decline of induction capability by outer membrane vesicles on larval metamorphosis of mussels through enzymatic treatments[J]. International Biodeterioration and Biodegradation, 190: 105783.
|
[35] |
HU XIAOMENG, ZHANG JUNBO, DING WENYANG, et al, 2021. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition[J]. Biofouling, 37(8): 911-921.
|
[36] |
JIN CUILI, XIN XIAYING, YU SIYU, et al, 2014. Antidiatom activity of marine bacteria associated with sponges from San Juan Island, Washington[J]. World Journal of Microbiology & Biotechnology, 30(4): 1325-1334.
|
[37] |
KHAN F, LEE J W, PHAM D T N, et al, 2020. Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1[J]. Applied Microbiology and Biotechnology, 104(2): 799-816.
|
[38] |
KÖNIG H, 2006. Bacillus species in the intestine of termites and other soil invertebrates[J]. Journal of Applied Microbiology, 101(3): 620-627.
|
[39] |
KROIHER M, BERKING S, 1999. On natural metamorphosis inducers of the cnidarians Hydractinia echinata (Hydrozoa) and Aurelia aurita (Scyphozoa)[J]. Helgoland Marine Research, 53(2): 118-121.
|
[40] |
LI JIAZHENG, ZHANG CHI, HU XIAOMENG, et al, 2022. Impact of different enzymes on biofilm formation and mussel settlement[J]. Scientific Reports, 12(1): 4685.
|
[41] |
LI MINGYU, WANG KAI, JIA CHENZHENG, et al, 2021. Bacteroidetes bacteria, important players in the marine sponge larval development process[J]. iScience, 24(6): 102662.
|
[42] |
LI XIANCUI, DOBRETSOV S, XU YING, et al, 2006. Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus[J]. Biofouling, 22(3): 187-194.
|
[43] |
LIANG XIAO, ZHANG JUNBO, SHAO ANQI, et al, 2021. Bacterial cellulose synthesis gene regulates cellular c-di-GMP that control biofilm formation and mussel larval settlement[J]. International Biodeterioration and Biodegradation, 165: 105330.
|
[44] |
LIU YANG, DU JUAN, LAI QILIANG, et al, 2017. Proposal of nine novel species of the Bacillus cereus group[J]. International Journal of Systematic and Evolutionary Microbiology, 67(8): 2499-2508.
|
[45] |
MANSOURI M, KHAYAM N, JAMSHIDIFAR E, et al, 2021. Streptomycin sulfate-loaded niosomes enables increased antimicrobial and anti-biofilm activities[J]. Frontiers in Bioengineering and Biotechnology, 9: 745099.
|
[46] |
MAYOROVA T D, KOSEVICH I A, MELEKHOVA O P, 2012. On some features of embryonic development and metamorphosis of Aurelia aurita (Cnidaria, Scyphozoa)[J]. Russian Journal of Developmental Biology, 43(5): 271-285.
|
[47] |
MORSE D E, HOOKER N, DUNCAN H, et al, 1979. γ-aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis[J]. Science, 204(4391): 407-410.
|
[48] |
PARISI C, SANDONNINI J, COPPOLA M R, et al, 2022. Biocide vs. eco-friendly antifoulants: role of the antioxidative defence and settlement in Mytilus galloprovincialis[J]. Journal of Marine Science and Engineering, 10(6): 792.
|
[49] |
PENG LIHUA, LIANG XIAO, CHANG RUIHENG, et al, 2020. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 36(7): 753-765.
|
[50] |
PENG SAIJUN, YE LIJING, LI YONGXUE, et al, 2023. Microbiota regulates life-cycle transition and nematocyte dynamics in jellyfish[J]. iScience, 26(12): 108444.
|
[51] |
PINTEUS S, LEMOS M F L, FREITAS R, et al, 2020. Medusa polyps adherence inhibition: A novel experimental model for antifouling assays[J]. Science of the Total Environment, 715: 136796.
|
[52] |
PURCELL J E, UYE S I, LO W T, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review[J]. Marine Ecology Progress Series, 350: 153-174.
|
[53] |
RISCHER M, GUO HUIJUAN, BEEMELMANNS C, 2022. Signalling molecules inducing metamorphosis in marine organisms[J]. Natural Product Reports, 39(9): 1833-1855.
|
[54] |
ROBERTS R D, KAWAMURA T, HANDLEY C M, 2007. Factors affecting settlement of abalone (Haliotis iris) larvae on benthic diatom films[J]. Journal of Shellfish Research, 26(2): 323-334.
|
[55] |
ROWE C E, KEABLE S J, AHYONG S T, et al, 2022. Physiological responses of the upside-down jellyfish, Cassiopea (Cnidaria: Scyphozoa: Cassiopeidae) to temperature and implications for their range expansion along the east coast of Australia[J]. Journal of Experimental Marine Biology and Ecology, 554: 151765.
|
[56] |
SATHEESH S, BA-AKDAH M A, AL-SOFYANI A A, 2016. Natural antifouling compound production by microbes associated with marine macroorganisms—A review[J]. Electronic Journal of Biotechnology, 21: 26-35.
|
[57] |
SATHEESH S, SONIAMBY A R, SHANKAR C V S, et al, 2012. Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.)[J]. Journal of Ocean University of China, 11(3): 354-360.
|
[58] |
SHEN MINGHUI, DI GUILAN, LI MIN, et al, 2018. Proteomics studies on the three larval stages of development and metamorphosis of Babylonia areolata[J]. Scientific Reports, 8(1): 6269.
|
[59] |
SUN HAO, XIE ZIQIANG, YANG XIAOZHOU, et al, 2023. New insights into microbial and metabolite signatures of coral bleaching[J]. Science of the Total Environment, 892: 164258.
|
[60] |
THOMÉ P E, RIVERA-ORTEGA J, 2022. Specific antibacterial activity against potential pathogens and restraining of larvae settlement from a pigmented Pseudoalteromonas strain isolated from the jellyfish Cassiopea xamachana[J]. International Aquatic Research, 14(2): 95-105.
|
[61] |
TSHISIKHAWE M L, DIALE M O, ABRAHAMS A M, et al, 2023. Screening and production of industrially relevant enzymes by Bacillus paranthracis strain MHDS3, a potential probiotic[J]. Fermentation, 9(11): 938.
|
[62] |
UYE S, SHIMAUCHI H, 2005. Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan[J]. Journal of Plankton Research, 27(3): 237-248.
|
[63] |
WANG WEI, LIU JUNSHENG, ZHOU JINWEI, et al, 2023a. Synergistic effect of kanamycin and amikacin with setomimycin on biofilm formation inhibition of Listeria monocytogenes[J]. Microbial Pathogenesis, 185: 106447.
|
[64] |
WANG XIAOCHENG, JIN QINGQING, YANG LU, et al, 2023b. Aggregation process of two disaster-causing jellyfish species, Nemopilema nomurai and Aurelia coerulea, at the intake area of a nuclear power cooling-water system in Eastern Liaodong Bay, China[J]. Frontiers in Marine Science, 9: 1098232.
|
[65] |
WANG YANTAO, SUN SONG, 2015. Population dynamics of Aurelia sp. 1 ephyrae and medusae in Jiaozhou Bay, China[J]. Hydrobiologia, 754(1): 147-155.
|
[66] |
WEILAND-BRÄUER N, PINNOW N, LANGFELDT D, et al, 2020. The native microbiome is crucial for offspring generation and fitness of Aurelia aurita[J]. mBio, 11(6): e02336-20.
|
[67] |
XU YING, HE HONGPING, SCHULZ S, et al, 2010. Potent antifouling compounds produced by marine Streptomyces[J]. Bioresource Technology, 101(4): 1331-1336.
|
[68] |
XU YING, LI HONGLEI, LI XIANCUI, et al, 2009. Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans[J]. Marine Biotechnology, 11(4): 495-504.
|
[69] |
YOON E A, LEE K, CHAE J, et al, 2019. Density estimates of moon jellyfish (Aurelia coerulea) in the Yeongsan estuary using nets and hydroacoustics[J]. Ocean Science Journal, 54(3): 457-465.
|