热带海洋学报 ›› 2018, Vol. 37 ›› Issue (2): 72-83.doi: 10.11978/2017060CSTR: 32234.14.2017060
所属专题: 南海专题
收稿日期:
2017-05-22
修回日期:
2017-09-06
出版日期:
2018-04-10
发布日期:
2018-04-11
作者简介:
作者简介:薛力园(1989—), 男, 河北省唐山市人, 在读博士研究生, 从事微体古生物学与地层学和古海洋学研究。E-mail:
基金资助:
Liyuan XUE1(), Xuan DING1(
), Renjie PEI2, Xiaoqiao WAN2
Received:
2017-05-22
Revised:
2017-09-06
Online:
2018-04-10
Published:
2018-04-11
Supported by:
摘要:
南海北部陆丰凹陷内LF14井记录了早中新世至早上新世的海相沉积地层。古水深重建结果显示研究井位在早中新世突然发生海侵, 水深迅速上升至最大值275m, 随后经数次波动, 整体处于中—外陆架环境, 共记录了5个完整的海侵—海退层序。回剥分析方法重建的LF14井沉降史揭示了研究井位在中中新世(17.5—10Ma)处于快速沉降期, 快速沉降导致的凹陷内沉积物的可容纳空间发育速率高和陆源物质供给充足是造成该阶段沉积速率高的两个重要因素; 晚中新世—早上新世(10—4.53Ma)处于弱沉降期, 推测东沙运动导致凹陷内的沉积物可容纳空间发育速率变小和陆源物质供给减少, 造成该时期内研究井位沉积速率低。最后, 依据定量重建的古水深变化在研究层段识别出一系列短暂存在的构造上升事件。
薛力园, 丁旋, 裴人傑, 万晓樵. 南海北部陆丰凹陷LF14井中新世古水深变化及沉降特征*[J]. 热带海洋学报, 2018, 37(2): 72-83.
Liyuan XUE, Xuan DING, Renjie PEI, Xiaoqiao WAN. Miocene evolution of paleo-water depth and subsidence revealed in Well LF14 from Lufeng Sag, northern South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(2): 72-83.
图2
LF14井主要底栖有孔虫属种横线标尺为100μm。 a. Bolivina cochi, 侧视, 样品深度705~710m, 下同; b. Rectobolivina glypta, 侧视, 1065~1070m; c. Bolivina robusta, 侧视, 705~710m; d. Bolivina tuberosa, 侧视, 1335~1340m; e. Brizalina capitata, 侧视, 1535~1540m; f. Bolivina desussata, 侧视, 835~840m; g. Cibicides laxus, 腹视715~720m; h. Cibicides refulgens, 腹视, 1095~1100m; i. Cibicides refulgens, 背视, 1095~1100m; j. Cibicides tani, 腹视, 705~710m; k. Epistominella pulchra, 背视, 895~900m; l. Epistominella pulchra, 腹视, 895~900m; m. Ammonia beccarii, 背视, 705~710m; n. Ammonia beccarii, 腹视, 705~710m; o. Hanzawaia mantaensis, 腹视, 725~730m; p. Hanzawaia mantaensis, 背视, 725~730m; q. Heterolepa dutemplei, 腹视, 685~690m; r. Heterolepa dutemplei, 壳缘视, 685~690m; s. Heterolepa dutemplei, 背视, 685~690m; t. Robulus submamilligerus, 侧视, 715~720m; u. Lenticulina comptoni, 侧视, 795~800m; v. Lenticulina lobata, 侧视, 745~750m; w. Lenticulina convergens, 侧视, 1565~1570m; x. Bulimina marginata, 侧视, 715~720m"
图3
LF14井主要底栖有孔虫属种横线标尺为100μm。a. Uvigerina torquata, 侧视, 样品深度685~690m, 下同; b. Uvigerina urnula, 侧视, 1585~1590m; c. Uvigerina schwageri, 侧视, 695~700m; d. Uvigerina canariensis, 侧视, 685~690m; e. Siphouvigerina proboscidea, 侧视, 735~740m; f. Rectobolivina xuwenensis, 侧视, 685~690m; g. Globocassidulina subglobosa, 口孔面, 705~710m; h. Fursenkoina schreibersiana, 侧视, 1475~1480m; i, Cibicidoides subhaidingerii, 背视, 705~710m; j. Cibicidoides subhaidingerii, 腹视, 705~710m; k. Cibicidoides pachyderma, 腹视, 725~730m; l. Cibicidoides pachyderma, 背视, 725~730m; m. Cibicidoides compressus, 背视, 1585~1590m; n. Cibicidoides compressus, 腹视, 1585~1590m; o. Brizalina hantkeniana, 侧视, 705~710m; p. Bolivina vadescens, 侧视, 1215~1220m"
表1
LF14井生物地层年龄控制点和全球海平面变化"
深度/m | 化石带 | 浮游有孔虫生物事件 (LAD) | 年龄/Ma | 全球海平面变化/m |
---|---|---|---|---|
685±5 | PL1 | Sphaeroidinellopsis kochi | 4.53 | 9.6 |
975±5 | M13/M12 | Globoquadrina dehiscens | 10 | -5.19 |
1135±5 | M12/M11 | Globorotalia siakensis | 11.6 | 17.79 |
1265±5 | M11/M10 | Globigerinoides subquadratus | 12.7 | 5.48 |
1345±5 | M10/M9 | Globorotalia foshi | 13.4 | -1 |
1425±5 | M9/M8 | Globorotalia foshi peripheroacuta | 13.8 | -2.13 |
1485±5 | M8/M7 | Globorotalia foshi peripheroronda | 14.7 | -9.4 |
1555±5 | M7/M6 | Globigerinoides sicanus | 15 | -12 |
1755±5 | M6/M5 | Globigerinatella insueta | 15.5 | 15 |
1885±5 | M5-4 | Globorotalia birnageae | 16.00 | 0.93 |
1905±5 | M5-4 | Globigerinoides parawoodi | 16.50 | 3.1 |
2005±5 | M4/M3 | Catapsydrax dissimilis | 17.5 | 4.15 |
[1] | 董军社, 1996. 珠江口盆地第三纪沉积速率[M]//郝诒纯, 徐钰林, 许仕策, 等. 南海珠江口盆地第三纪微体古生物及古海洋学研究. 武汉: 中国地质大学出版社: 114-121. |
DONG JUNSHE, 1996. Tertiary sedimentation rates in Pearl River Mouth Basin[M]//HAO YICHUN, XU YULIN, XU SHICE, et al. Research on micropalaeontology and paleoceanography in Pearl River Mouth Basin, South China Sea. Wuhan: China University Geosciences Press: 114-121 (in Chinese). | |
[2] | 郝诒纯, 裘松余, 林甲兴, 等, 1980. 有孔虫[M]. 北京: 科学出版社. |
[3] | 郝诒纯, 陈平富, 万晓樵, 等, 2000. 南海北部莺歌海-琼东南盆地晚第三纪层序地层与海平面变化[J]. 现代地质, 14(3): 237-245. |
HAO YICHUN, CHEN PINGFU, WAN XIAOQIAO, et al, 2000. Late Tertiary sequence stratigraphy and sea level changes in Yinggehai-Qiongdongnan Basin[J]. Geoscience, 14(3): 237-245 (in Chinese with English abstract). | |
[4] | 何卫军, 谢金有, 刘新宇, 等, 2011. 莺歌海盆地DF1-1-11井有孔虫生物地层与沉积环境研究[J]. 地层学杂志, 35(1): 81-87. |
HE WEIJUN, XIE JINYOU, LIU XINYU, et al, 2011. Foraminiferal biostratigraphy and sedimentary environment reconstruction based on paleontological data from bore hole DF1-1-11, Yinggehai Basin[J]. Journal of Stratigraphy, 35(1): 81-87 (in Chinese with English abstract). | |
[5] | 侯佑堂, 李应培, 金庆焕, 等, 1981.南海北部大陆架第三纪古生物图册[M]. 广州: 广东科技出版社. |
[6] | 湖北省地质科学研究所, 河南省地质局, 湖北省地质局, 等, 1978. 中南地区古生物图册(四): 微体化石部分[M]. 北京: 地质出版社. |
[7] | 李学杰, 1994. 珠江口盆地表层沉积物浮游有孔虫含量与水深关系定量研究[J]. 海洋地质与第四纪地质, 14(3): 79-84. |
LI XUEJIE, 1994. Quantitative research of planktonic foraminifera content (in the surficial sediment) related to water depth in the Zhujiang (Pearl) River Mouth Basin[J]. Marine Geology & Quaternary Geology, 14(3): 79-84 (in Chinese with English abstract). | |
[8] | 李学杰, 陈芳, 陈超云, 等, 2004. 南海西部浮游有孔虫含量与水深关系定量研究[J]. 古地理学报, 6(4): 442-447. |
LI XUEJIE, CHEN FANG, CHEN CHAOYUN, et al, 2004. Quantitative research on relationship between planktonic foraminifera content and water depth in western South China Sea[J]. Journal of Palaeogeography, 6(4): 442-447 (in Chinese with English abstract). | |
[9] | 麦文, 祝幼华, 马兆亮, 等, 2015. 南海北部琼东南盆地BD-2井中新世有孔虫生物地层及沉积环境[J]. 微体古生物学报, 32(4): 350-360. |
MAI WEN, ZHU YOUHUA, MA ZHAOLIANG, et al, 2015. Miocene foraminifera stratigraphy and palaeoenvironment of Well BD-2 in the Qiongdongnan Basin, northern South China Sea, China[J]. Acta Micropalaeontologica Sinica, 32(4): 350-360 (in Chinese with English abstract). | |
[10] | 庞军刚, 杨友运, 郝磊, 2012. 湖盆古水深恢复研究现状综述[J]. 长江大学学报(自然科学版)理工卷, 9(9): 42-45. |
[11] | 秦国权, 1996. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用[J]. 海洋地质与第四纪地质, 16(4): 1-18. |
QIN GUOQUAN, 1996. Application of micropaleontology to the sequence stratigraphic studies of late Cenozoic in the Zhujiang River Mouth Basin[J]. Marine Geology & Quaternary Geology, 16(4): 1-18 (in Chinese with English abstract). | |
[12] | 施和生, 何敏, 张丽丽, 等, 2014. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 26(3): 11-22. |
SHI HESHENG, HE MIN, ZHANG LILI, et al, 2014. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 26(3): 11-22 (in Chinese with English abstract). | |
[13] | 田昌炳, 于兴河, 徐安娜, 等, 2003. 我国低效气藏的地质特征及其成因特点[J]. 石油实验地质, 25(3): 235-238. |
TIAN CHANGBING, YU XINGHE, XU ANNA, et al, 2003. Geological characteristics and origin peculiarities of low efficiency gas reservoirs in China[J]. Petroleum Geology & Experiment, 25(3): 235-238 (in Chinese with English abstract). | |
[14] | 万晓樵, 郝诒纯, 董军社, 1996. 珠江口盆地第三纪浮游有孔虫分带[M]//郝诒纯, 徐钰林, 许仕策, 等. 南海珠江口盆地第三纪微体古生物及古海洋学研究. 武汉: 中国地质大学出版社: 10-18. |
[15] | 汪品先, 章纪军, 赵泉鸿, 等, 1988.东海底质中的有孔虫和介形虫[M]. 北京: 海洋出版社. |
[16] | 魏魁生, 崔旱云, 叶淑芬, 等, 2001. 琼东南盆地高精度层序地层学研究[J]. 地球科学-中国地质大学学报, 26(1): 59-66 |
WEI KUISHENG, CUI HANYUN, YE SHUFEN, et al, 2001. High-precision sequence stratigraphy in Qiongdongnan Basin[J]. Earth Science-Journal of China University of Geosciences, 26(1): 59-66 (in Chinese with English abstract). | |
[17] | 吴时国, 刘展, 王万银, 等, 2004. 东沙群岛海区晚新生代构造特征及其对弧-陆碰撞的响应[J]. 海洋与湖沼, 35(6): 481-490. |
WU SHIGUO, LIU ZHAN, WANG WANYIN, et al, 2004. Late Cenozoic Neotectonics in the Dongsha Islands region and its responds to collision between Chinese continental margin and Luzon[J]. Oceanologia et Limnologia Sinica, 35(6): 481-490 (in Chinese with English abstract). | |
[18] | 吴智平, 周瑶琪, 2000. 一种计算沉积速率的新方法——宇宙尘埃特征元素法[J]. 沉积学报, 18(3): 395-399. |
WU ZHIPING, ZHOU YAOQI, 2000. Using the characteristic elements from Meteoritic Must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 18(3): 395-399 (in Chinese with English abstract). | |
[19] | 谢辉, 周蒂, 陈广浩, 等, 2014. 盆地沉降史回剥分析的不确定性及参数影响[J]. 热带海洋学报, 33(5): 50-59. |
XIE HUI, ZHOU DI, CHEN GUANGHAO, et al, 2014. Uncertainty and parameterization in backstripping of basin subsidence analysis[J]. Journal of Tropical Oceanography, 33(5): 50-59 (in Chinese with English abstract). | |
[20] | 徐钰林, 1996.珠江口盆地第三纪钙质超微化石分带及古海洋环境[M]//郝诒纯, 徐钰林, 许仕策, 等. 南海珠江口盆地第三纪微体古生物及古海洋学研究[M]. 武汉: 中国地质大学出版社: 74-87. |
[21] | 叶得泉, 钟筱春, 姚益民, 等, 1993.中国油气区第三系(I): 总论[M]. 北京: 石油工业出版社: 232-249. |
[22] | 张孟然, 姜正龙, 2016. 珠江口盆地白云凹陷沉降特征分析[J]. 山东科技大学学报(自然科学版), 35(1): 30-37. |
ZHANG MENGRAN, JIANG ZHENGLONG, 2016. Analysis of subsidence characteristics of Baiyun Sag, Pearl River Mouth Basin[J]. Journal of Shandong University of Science and Technology (Natural Science), 35(1): 30-37 (in Chinese with English abstract). | |
[23] | 张向涛, 陈亮, 佘清华, 等, 2012. 南海北部古韩江物源的演化特征[J]. 海洋地质与第四纪地质, 32(4): 41-48. |
ZHANG XIANGTAO, CHEN LIANG, SHE QINGHUA, et al, 2012. Provenance evolution of the paleo-Hanjiang River in the north South China Sea[J]. Marine Geology & Quaternary Geology, 32(4): 41-48 (in Chinese with English abstract). | |
[24] | 赵淑娟, 吴时国, 施和生, 等, 2012. 南海北部东沙运动的构造特征及动力学机制探讨[J]. 地球物理学进展, 27(3): 1008-1019. |
ZHAO SHUJUAN, WU SHIGUO, SHI HESHENG, et al, 2012. Structures and dynamic mechanism related to the Dongsha movement at the northern margin of South China Sea[J]. Progress in Geophysics, 27(3): 1008-1019 (in Chinese with English abstract). | |
[25] | 郑守仪, 傅钊先, 2001.中国动物志: 粒网虫门: 有孔虫纲: 胶结有孔虫[M]. 北京: 科学出版社. |
[26] | 朱伟林, 米立军, 2010.中国海域含油气盆地图集[M]. 北京: 石油工业出版社. |
ZHU WEILIN, MI LIJUN, 2010.Atlas of oil and gas basins, China Sea[M]. Beijing: Petroleum Industry Press (in Chinese). | |
[27] | ALLEN P A, ALLEN J R, 2005. Basin analysis: principles and applications[M]. 2nd ed. Oxford: Blackwell. |
[28] | AVNAIM-KATAV S, ALMOGI-LABIN A, SANDLER A, et al, 2013. Benthic foraminifera as palaeoenvironmental indicators during the last million years in the eastern Mediterranean inner shelf[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 386: 512-530. |
[29] | AVNAIM-KATAV S, MILKER Y, SCHMIEDL G, et al, 2016. Impact of eustatic and tectonic processes on the southeastern Mediterranean shelf during the last one million years: Quantitative reconstructions using a foraminiferal transfer function[J]. Marine Geology, 376: 26-38. |
[30] | BÁLDI K, HOHENEGGER J, 2008. Paleoecology of benthic foraminifera of the Baden-Sooss section (Badenian, Middle Miocene, Vienna Basin, Austria)[J]. Geologica Carpathica, 59(5): 411-424. |
[31] | BERGGREN W A, HAQ B U, 1976. The andalusian stage (late miocene): biostratigraphy, biochronology and paleoecology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 20(1-2): 67-129. |
[32] | CAMPEAU S, PIENITZ R, HÉQUETTE A, 1999. Diatoms as quantitative paleodepth indicators in coastal areas of the southeastern Beaufort Sea, Arctic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 146(1-4): 67-97. |
[33] | CHAZOTTES V, CABIOCH G, GOLUBIC S, et al, 2009. Bathymetric zonation of modern microborers in dead coral substrates from New Caledonia—Implications for paleodepth reconstructions in Holocene corals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3-4): 456-468. |
[34] | CLIFT P, LEE J I, CLARK M K, et al, 2002a. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea[J]. Marine Geology, 184(3-4): 207-226. |
[35] | CLIFT P, LIN J, BARCKHAUSEN U, 2002b. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea[J]. Marine and Petroleum Geology, 19(8): 951-970. |
[36] | CLIFT P D, HODGES K V, HESLOP D, et al, 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 1(12): 875-880, doi: 10.1038/ngeo351. |
[37] | GONZÁLEZ-REGALADO M L, 1989. Estudio sistemático de los Foraminíferos bentónicos de las arenas fosilíferas del plioceno de Huelva: su significado paleológico[J]. Estudios Geológicos, 45(1-2): 101-119. |
[38] | GUPTA B K S, 2003. Modern foraminifera[M]. Netherlands: Springer . |
[39] | HAQ B U, HARDENBOL J, VAIL P R, 1987. Chronology of fluctuating sea levels since the triassic.[J]. Science, 235(4793): 1156-1167. |
[40] | HOHENEGGER J, 1995. Depth estimation by proportions of living larger foraminifera[J]. Marine Micropaleontology, 26(1-4): 31-47. |
[41] | HOHENEGGER J, 2005. Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 217(1-2): 115-130. |
[42] | HOHENEGGER J, ANDERSEN N, BÁLDI K, et al, 2008. Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria) - Multivariate analysis of the Baden-Sooss section[J]. Geologica Carpathica, 59(5): 461-487. |
[43] | HOLBOURN A, HENDERSON A S, MACLEOD N, 2013. Atlas of benthic foraminifera[M]. London: Wiley & Sons, Ltd. |
[44] | KAIHO K, 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 22(8): 719-722. |
[45] | KATZ M E, MILLER K G, MOUNTAIN G S, 2003. Biofacies and lithofacies evidence for paleoenvironmental interpretations of upper Neogene sequences on the New Jersey continental shelf (ODP Leg 174A)[M]//OLSON H C, LECKIE R M. Micropaleontologic proxies for sea-level change and stratigraphic discontinuities. Tulsa: SEPM Special Publication: 131-146. |
[46] | KUCERA M, 2007. Chapter six planktonic foraminifera as tracers of past oceanic environments[J]. Developments in Marine Geology, 1: 213-262. |
[47] | MILLER K G, KOMINZ M A, BROWNING J V, et al, 2005. The Phanerozoic record of global sea-level change[J]. Science, 310(5752): 1293-1298. |
[48] | MILKER Y, SCHMIEDL G, BETZLER C, et al, 2009. Distribution of recent benthic foraminifera in shelf carbonate environments of the Western Mediterranean Sea[J]. Marine Micropaleontology, 73(3-4): 207-225. |
[49] | MILKER Y, SCHMIEDL G, BETZLER C, 2010. Paleobathymetric history of the Western Mediterranean Sea shelf during the latest glacial period and the Holocene: quantitative reconstructions based on foraminiferal transfer functions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 307(1-4): 324-338. |
[50] | MURRAY J W, 1976. A method of determining proximity of marginal seas to an ocean[J]. Marine Geology, 22(2): 103-119. |
[51] | MURRAY J W, 1991. Ecology and palaeoecology of benthic foraminifera[M]. Harlow: Longman Scientific & Technical. |
[52] | MURRAY J W, 2006.Ecology and applications of benthic foraminifera[M]. Cambridge: Cambridge University Press. |
[53] | PÉREZ-ASENSIO J N, AGUIRRE J, SCHMIEDL G, et al, 2012. Messinian paleoenvironmental evolution in the lower Guadalquivir Basin (SW Spain) based on benthic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328: 135-151. |
[54] | PÉREZ-ASENSIO J N, AGUIRRE J, JIMÉNEZ-MORENO G, et al, 2013. Glacioeustatic control on the origin and cessation of the Messinian salinity crisis[J]. Global and Planetary Change, 111: 1-8. |
[55] | SCHUMACHER S, JORISSEN F J, DISSARD D, et al, 2007. Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea)[J]. Marine Micropaleontology, 62(1): 45-73. |
[56] | SCHÖNFELD J, 1997. The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin[J]. Marine Micropaleontology, 29(3-4): 211-236. |
[57] | SCLATER J G, CHRISTIE P A F, 1980. Continental stretching: An explanation of the Post—Mid—Cretaceous subsidence of the central North Sea Basin[J]. Journal of Geophysical Research: Atmospheres, 85(B7): 3711-3739. |
[58] | SCOTT D B, MEDIOLI F S, SCHAFER C T, 2001.Monitoring in coastal environments using foraminifera and thecamoebian indicators[M]. Cambridge: Cambridge University Press. |
[59] | SPEZZAFERRI S, TAMBURINI F, 2007. Paleodepth variations on the Eratosthenes Seamount (Eastern Mediterranean): sea-level changes or subsidence?[J]. Earth Discussions, 2(3): 115-132. |
[60] | STAM B, GRADSTEIN F M, LLOYD P, et al, 1987. Algorithms for porosity and subsidence history[J]. Computers & Geosciences, 13(4): 317-349. |
[61] | STECKLER M S, WATTS A B, 1978. Subsidence of the Atlantic-type continental margin off New York[J]. Earth and Planetary Science Letters, 41(1): 1-13. |
[62] | SZAREK R, KUHNT W, KAWAMURA H, et al, 2006. Distribution of recent benthic foraminifera on the Sunda Shelf (South China Sea)[J]. Marine Micropaleontology, 61(4): 171-195. |
[63] | SZAREK R, KUHNT W, KAWAMURA H, et al, 2009. Distribution of recent benthic foraminifera along continental slope of the Sunda Shelf (South China Sea)[J]. Marine Micropaleontology, 71(1-2): 41-59. |
[64] | VAN DER ZWAAN G J, JORISSEN F J, DE STIGTER H C, 1990. The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications[J]. Marine Geology, 95(1): 1-16. |
[65] | VAN HINSBERGEN D J J, KOUWENHOVEN T J, VAN DER ZWAAN G J, 2005. Paleobathymetry in the backstripping procedure: correction for oxygenation effects on depth estimates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 221(3-4): 245-265. |
[66] | VAN MARLE L J, 1988. Bathymetric distribution of benthic foraminifera on the Australian-Irian Jaya continental margin, eastern Indonesia[J]. Marine Micropaleontology, 13(2): 97-152. |
[67] | WANG PINXIAN, LI QIANYU, 2009. The South China Sea: paleoceanography and sedimentology[M]. Netherlands: Springer. |
[68] | WAKEFIELD M I, 2003. Bio-Sequence stratigraphic utility of SHE diversity analysis[M]//OLSON H C, LECKIE R M. Micropaleontologic proxies for sea-level change and stratigraphic discontinuities. Tulsa: SEPM Special Publication: 81-87. |
[69] | XIE HUI, ZHOU DI, PANG XIONG, et al, 2013. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysical Research, 34(3-4): 159-173. |
[70] | XIE HUI, ZHOU DI, Li YUANPING, et al, 2014. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 615-616: 182-198. |
[1] | 柳原, 柯志新, 李开枝, 谭烨辉, 梁竣策, 周伟华. 人类活动和沿岸流影响下的粤东近海浮游动物群落特征[J]. 热带海洋学报, 2024, 43(4): 98-111. |
[2] | 江绿苗, 陈天然, 赵宽, 张婷, 许莉佳. 南海北部涠洲岛边缘珊瑚礁的生物侵蚀实验研究[J]. 热带海洋学报, 2024, 43(3): 155-165. |
[3] | 许莉佳, 廖芝衡, 陈辉, 王永智, 黄柏强, 林巧云, 甘健锋, 杨静. 南海北部珊瑚群落结构特征及其对海洋热浪事件的响应[J]. 热带海洋学报, 2024, 43(3): 58-71. |
[4] | 赵明辉, 袁野, 张佳政, 张翠梅, 高金尉, 王强, 孙珍, 程锦辉. 南海北部被动陆缘洋陆转换带张裂-破裂研究新进展[J]. 热带海洋学报, 2024, 43(2): 173-183. |
[5] | 赵中贤, 孙珍, 毛云华, 张伙带. 南海北部陆缘不均匀伸展及脉动式构造升降史*[J]. 热带海洋学报, 2023, 42(3): 96-115. |
[6] | 杨一凯, 曾丽丽. 挟带黑潮高盐水的中尺度涡在南海北部的时空特征[J]. 热带海洋学报, 2023, 42(3): 75-85. |
[7] | 张金尚, 邹定辉, 马玉, 李锐祥, 刘愉强, 孟强, 刘同木, 史华明. 南海北部水团及中尺度现象对营养盐时空分布的影响*[J]. 热带海洋学报, 2023, 42(1): 168-181. |
[8] | 曾毅港, 经志友, 黄小龙, 郑瑞玺. 夏季南海北部粤东陆架锋面的动力特征分析*[J]. 热带海洋学报, 2022, 41(4): 136-145. |
[9] | 马梦真, 李芊, 吴正超, 陈寅超, 俞建成. 南海北部最小含氧带水下滑翔机观测结果初步分析*[J]. 热带海洋学报, 2022, 41(1): 131-142. |
[10] | 王仁政, 单正垛, 孟思雨, 宫响. 南海北部次表层叶绿素最大值年际变化特征分析*[J]. 热带海洋学报, 2021, 40(6): 63-75. |
[11] | 王剑, 陈楚群, 周伟华, 李祥付, 吴颉, 叶海彬, 唐世林. 利用遥感技术估算南海北部表层异养细菌丰度*[J]. 热带海洋学报, 2021, 40(5): 53-62. |
[12] | 苏晓康, 赵明辉, 李子正, 袁野, 王星月, 程锦辉, 张佳政. 南海北部陆缘OBS2018-H2测线地壳结构初步结果*[J]. 热带海洋学报, 2021, 40(5): 111-122. |
[13] | 胡守祥, 姚衍桃, 李健, 李爽, 汪灵, 詹文欢, 李伟, 冯英辞. 琼东南盆地陆架区晚中新世以来断层活动性研究[J]. 热带海洋学报, 2021, 40(2): 90-102. |
[14] | 舒婵, 耿兵绪, 房巍巍, 修鹏. 南海北部海洋生态模型的参数分析及遗传算法优化[J]. 热带海洋学报, 2020, 39(2): 98-106. |
[15] | 杨威, 董园, 俎婷婷, 刘长建, 修鹏. 南海北部夏季叶绿素a分布规律及影响因素[J]. 热带海洋学报, 2019, 38(6): 9-20. |
|