| [1] | 
																						 
											  匡志远, 宋振亚, 董昌明, 2020. 基于机器学习订正模型的未来百年全球海表温度预估研究[J]. 气候变化研究快报, 9(4): 270-284.
											 											 | 
										
																													
																						 | 
																						 
											  KUANG ZHIYUAN, SONG ZHENYA, DONG CHANGMING, 2020. Study on the future projection of global sea surface temperature over 21st century using a biases correction model based on machine learning[J]. Climate Change Research Letters, 9(4): 270-284. (in Chinese with English abstract) 
											 												 
																									doi: 10.12677/CCRL.2020.94031
																																			 											 | 
										
																													
																						| [2] | 
																						 
											  梁宇娴, 俞晓磊, 郭亚娟, 等, 2020. 3种传统方法对不同珊瑚表面积测量的适用性及其校准方法——以3D扫描技术为基准[J]. 热带海洋学报, 39(1): 85-93. 
											 												 
																									doi: 10.11978/2019039
																																			 											 | 
										
																													
																						 | 
																						 
											  LIANG YUXIAN, YU XIAOLEI, GUO YAJUAN, et al, 2020. Applicability and calibration methods of three traditional surface area measurement methods for different coral species — based on 3D scanning technology[J]. Journal of Tropical Oceanography, 39(1): 85-93. (in Chinese with English abstract) 
											 												 
																									doi: 10.11978/2019039
																																			 											 | 
										
																													
																						| [3] | 
																						 
											  吴英, 2018. 丛生盔形珊瑚(Galaxea fascicularis)两种形态型的结构特征与生长特性的比较分析[D]. 海口: 海南大学.
											 											 | 
										
																													
																						 | 
																						 
											  WU YING, 2018. Comparison and analysis of the structural characteristics and growth characteristics of two morphological types of Galaxea fascicularis[D]. Haikou: Hainan University. (in Chinese with English abstract)
											 											 | 
										
																													
																						| [4] | 
																						 
											  俞晓磊, 江雷, 罗勇, 等, 2019. 异养营养对丛生盔形珊瑚代谢及共生藻光合生理的影响[J]. 海洋科学, 43(12): 81-88.
											 											 | 
										
																													
																						 | 
																						 
											  YU XIAOLEI, JIANG LEI, LUO YONG, et al, 2019. Effects of heterotrophy on the metabolism and symbiont photosynthetic physiology of Galaxea fascicularis[J]. Marine Sciences, 43(12): 81-88. (in Chinese with English abstract)
											 											 | 
										
																													
																						| [5] | 
																						 
											  ANTHONY K R N, HOEGH-GULDBERG O, 2003. Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys?[J]. Functional Ecology, 17(2): 246-259. 
											 												 
																									doi: 10.1046/j.1365-2435.2003.00731.x
																																			 											 | 
										
																													
																						| [6] | 
																						 
											  BAUMANN J, GROTTOLI A G, HUGHES A D, et al, 2014. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage[J]. Journal of Experimental Marine Biology and Ecology, 461: 469-478. 
											 												 
																									doi: 10.1016/j.jembe.2014.09.017
																																			 											 | 
										
																													
																						| [7] | 
																						 
											  BENNETT S, DUARTE C M, MARBÀ N, et al, 2019. Integrating within-species variation in thermal physiology into climate change ecology[J]. Philosophical Transactions of the Royal Society B: biological Sciences, 374(1778): 20180550. 
											 												 
																									doi: 10.1098/rstb.2018.0550
																																			 											 | 
										
																													
																						| [8] | 
																						 
											  BISCÉRÉ T, LORRAIN A, RODOLFO-METALPA R, et al, 2017. Nickel and ocean warming affect scleractinian coral growth[J]. Marine Pollution Bulletin, 120(1-2): 250-258. 
											 												 
																									doi: S0025-326X(17)30411-3
																																					pmid: 28526200
																							 											 | 
										
																													
																						| [9] | 
																						 
											  BOVE C B, UMBANHOWAR J, CASTILLO K D, 2020. Meta-analysis reveals reduced coral calcification under projected ocean warming but not under acidification across the Caribbean Sea[J]. Frontiers in Marine Science, 7: 127. 
											 												 
																									doi: 10.3389/fmars.2020.00127
																																			 											 | 
										
																													
																						| [10] | 
																						 
											  COLOMBO-PALLOTTA M F, RODRÍGUEZ-ROMÁN A, IGLESIAS-PRIETO R, 2010. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol[J]. Coral Reefs, 29(4): 899-907. 
											 												 
																									doi: 10.1007/s00338-010-0638-x
																																			 											 | 
										
																													
																						| [11] | 
																						 
											  DA SILVAFONSECA J, DE BARROSMARANGON I L F, MARQUES J A, et al, 2017. Effects of increasing temperature alone and combined with copper exposure on biochemical and physiological parameters in the zooxanthellate scleractinian coral Mussismilia harttii[J]. Aquatic Toxicology, 190: 121-132. 
											 												 
																									doi: 10.1016/j.aquatox.2017.07.002
																																			 											 | 
										
																													
																						| [12] | 
																						 
											  DARLING E S, ALVAREZ‐FILIP L, OLIVER T A, et al, 2012. Evaluating life-history strategies of reef corals from species traits[J]. Ecology Letters, 15(12): 1378-1386. 
											 												 
																									doi: 10.1111/j.1461-0248.2012.01861.x
																																					pmid: 22938190
																							 											 | 
										
																													
																						| [13] | 
																						 
											  DIAS M, FERREIRA A, GOUVEIA R, et al, 2018. Synergistic effects of warming and lower salinity on the asexual reproduction of reef-forming corals[J]. Ecological Indicators, 98: 334-348. 
											 												 
																									doi: 10.1016/j.ecolind.2018.11.011
																																			 											 | 
										
																													
																						| [14] | 
																						 
											  DÍAZ-ALMEYDA E M, PRADA C, OHDERA A H, et al, 2017. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates[J]. Proceedings of the Royal Society B: Biological Sciences, 284(1868): 20171767. 
											 												 
																									doi: 10.1098/rspb.2017.1767
																																			 											 | 
										
																													
																						| [15] | 
																						 
											  DUNN S R, BYTHELL J C, LE TISSIER M D A, et al, 2002. Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp.[J]. Journal of Experimental Marine Biology and Ecology, 272(1): 29-53. 
											 												 
																									doi: 10.1016/S0022-0981(02)00036-9
																																			 											 | 
										
																													
																						| [16] | 
																						 
											  ENRÍQUEZ S, MÉNDEZ E R, HOEGH-GULDBERG O, et al, 2017. Key functional role of the optical properties of coral skeletons in coral ecology and evolution[J]. Proceedings of the Royal Society B: Biological Sciences, 284(1853): 20161667. 
											 												 
																									doi: 10.1098/rspb.2016.1667
																																			 											 | 
										
																													
																						| [17] | 
																						 
											  GIBBIN E M, KRUEGER T, PUTNAM H M, et al, 2018. Short-term thermal acclimation modifies the metabolic condition of the coral holobiont[J]. Frontiers in Marine Science, 5: 10. 
											 												 
																									doi: 10.3389/fmars.2018.00010
																																			 											 | 
										
																													
																						| [18] | 
																						 
											  GROVER R, MAGUER J F, ALLEMAND D, et al, 2008. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata[J]. Journal of Experimental Biology, 211(6): 860-865. 
											 												 
																									doi: 10.1242/jeb.012807
																																			 											 | 
										
																													
																						| [19] | 
																						 
											  HAGEDORN M, CARTER V L, LAGER C, et al, 2016. Potential bleaching effects on coral reproduction[J]. Reproduction, Fertility and Development, 28(8): 1061-1071. 
											 												 
																									doi: 10.1071/RD15526
																																			 											 | 
										
																													
																						| [20] | 
																						 
											  HUGHES A D, GROTTOLI A G, 2013. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?[J]. PLoS One, 8(11): e81172. 
											 												 
																									doi: 10.1371/journal.pone.0081172
																																			 											 | 
										
																													
																						| [21] | 
																						 
											  HUGHES T P, ANDERSON K D, CONNOLLY S R, et al, 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 359(6371): 80-83. 
											 												 
																									doi: 10.1126/science.aan8048
																																					pmid: 29302011
																							 											 | 
										
																													
																						| [22] | 
																						 
											  INNIS T, ALLEN-WALLER L, BROWN K T, et al, 2021. Marine heatwaves depress metabolic activity and impair cellular acid-base homeostasis in reef-building corals regardless of bleaching susceptibility[J]. Global Change Biology, 27(12): 2728-2743. 
											 												 
																									doi: 10.1111/gcb.15622
																																			 											 | 
										
																													
																						| [23] | 
																						 
											  KING N G, MCKEOWN N J, SMALE D A, et al, 2018. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes[J]. Ecography, 41(9): 1469-1484. 
											 												 
																									doi: 10.1111/ecog.03186
																																			 											 | 
										
																													
																						| [24] | 
																						 
											  LIN ZHENYUE, CHEN MINGLIANG, DONG XU, et al, 2017. Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners[J]. Scientific Reports, 7: 42100. 
											 												 
																									doi: 10.1038/srep42100
																																			 											 | 
										
																													
																						| [25] | 
																						 
											  LOHR K E, PATTERSON J T, 2017. Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816)[J]. Journal of Experimental Marine Biology and Ecology, 486: 87-92. 
											 												 
																									doi: 10.1016/j.jembe.2016.10.005
																																			 											 | 
										
																													
																						| [26] | 
																						 
											  MARTA D, 2020. Vulnerability of reef-building corals towards global change[D]. Lisboa: Universidade de Lisboa, Faculdade de Ciências.
											 											 | 
										
																													
																						| [27] | 
																						 
											  MIDDLEBROOK R, ANTHONY K R N, HOEGH-GULDBERG O, et al, 2012. Thermal priming affects symbiont photosynthesis but does not alter bleaching susceptibility in Acropora millepora[J]. Journal of Experimental Marine Biology and Ecology, 432-433: 64-72.
											 											 | 
										
																													
																						| [28] | 
																						 
											  MITTERER R M, 1978. Amino acid composition and metal binding capability of the skeletal protein of corals[J]. Bulletin of Marine Science, 28(1): 173-180.
											 											 | 
										
																													
																						| [29] | 
																						 
											  MOBERG F, FOLKE C, 1999. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 29(2): 215-233. 
											 												 
																									doi: 10.1016/S0921-8009(99)00009-9
																																			 											 | 
										
																													
																						| [30] | 
																						 
											  MUSCATINE L, MCCLOSKEY L R, MARIAN R E, 1981. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration[J]. Limnology and Oceanography, 26(4): 601-611. 
											 												 
																									doi: 10.4319/lo.1981.26.4.0601
																																			 											 | 
										
																													
																						| [31] | 
																						 
											  NAKAJIMA Y, SHINZATO C, SATOH N, et al, 2015. Novel polymorphic microsatellite markers reveal genetic differentiation between two sympatric types of Galaxea fascicularis[J]. PLoS One, 10(7): e0130176. 
											 												 
																									doi: 10.1371/journal.pone.0130176
																																			 											 | 
										
																													
																						| [32] | 
																						 
											  NAKAJIMA Y, ZAYASU Y, SHINZATO C, et al, 2016. Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands, Japan[J]. Ecology and Evolution, 6(5): 1457-1469. 
											 												 
																									doi: 10.1002/ece3.1981
																																			 											 | 
										
																													
																						| [33] | 
																						 
											  RAZAK T B, ROFF G, LOUGH J M, et al, 2020. Growth responses of branching versus massive corals to ocean warming on the Great Barrier Reef, Australia[J]. Science of the Total Environment, 705: 135908. 
											 												 
																									doi: 10.1016/j.scitotenv.2019.135908
																																			 											 | 
										
																													
																						| [34] | 
																						 
											  RODOLFO-METALPA R, MARTIN S, FERRIER-PAGÈS C, et al, 2010. Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD[J]. Biogeosciences, 7(1): 289-300. 
											 												 
																									doi: 10.5194/bg-7-289-2010
																																			 											 | 
										
																													
																						| [35] | 
																						 
											  SAMIEI J V, SALEH A, MEHDINIA A, et al, 2015. Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations[J]. PeerJ, 3: e1062. 
											 												 
																									doi: 10.7717/peerj.1062
																																			 											 | 
										
																													
																						| [36] | 
																						 
											  SCHOEPF V, GROTTOLI A G, LEVAS S J, et al, 2015. Annual coral bleaching and the long-term recovery capacity of coral[J]. Proceedings of the Royal Society B: Biological Sciences, 282(1819): 20151887. 
											 												 
																									doi: 10.1098/rspb.2015.1887
																																			 											 | 
										
																													
																						| [37] | 
																						 
											  TOTH L T, STATHAKOPOULOS A, KUFFNER I B, et al, 2019. The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage[J]. Ecology, 100(9): e02781.
											 											 | 
										
																													
																						| [38] | 
																						 
											  VIMALA T, POONGHUZHALI T V, 2015. Estimation of pigments from seaweeds by using acetone and DMSO[J]. International Journal of Science and Research, 4(10): 1850-1854.
											 											 | 
										
																													
																						| [39] | 
																						 
											  WANGPRASEURT D, HOLM J B, LARKUM A W D, et al, 2017. In vivo microscale measurements of light and photosynthesis during coral bleaching: evidence for the optical feedback loop?[J]. Frontiers in Microbiology, 8: 59.
											 											 | 
										
																													
																						| [40] | 
																						 
											  WEPFER P H, NAKAJIMA Y, HUI F K C, et al, 2020. Metacommunity ecology of Symbiodiniaceae hosted by the coral Galaxea fascicularis[J]. Marine Ecology Progress Series, 633: 71-87. 
											 												 
																									doi: 10.3354/meps13177
																																			 											 | 
										
																													
																						| [41] | 
																						 
											  WOOLDRIDGE S A, 2014. Assessing coral health and resilience in a warming ocean: why looks can be deceptive[J]. BioEssays, 36(11): 1041-1049. 
											 												 
																									doi: 10.1002/bies.201400074
																																					pmid: 25303686
																							 											 | 
										
																													
																						| [42] | 
																						 
											  XU SHENDONG, YU KEFU, TAO SHICHEN, et al, 2018. Evidence for the thermal bleaching of Porites corals from 4.0 ka B.P. in the northern South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 123(1): 79-94. 
											 												 
																									doi: 10.1002/2017JG004091
																																			 											 |