[1] ESTAMPADOR E P. Studies on Scylla (Crustacea: Portunidae) I. Revision of the genus[J]. Philippine J Sci, 1949, 78: 95-108.
[2] KEENAN C P, DAVIES P J F, MANN D L. A revision of the genus Scylla de Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae)[J]. Raffles Bull Zool, 1998, 46: 217-245.
[3] KEENAN C P. The fourth species of Scylla[C]//KEENAN C P, BLACKSHAW A. Mud crab aquaculture and biology. ACAIR Proceedings No. 78. Watson Ferguson & Co, Australia, 1999: 48-58.
[4] IMAI H, NUMACHI K. Intra- and interspecific genetic variability and relationships among mud crabs, Scylla spp. (Decapoda: Portunidae), demonstrated by RFLP analysis of mitochondrial DNA[J]. J Anita Genet, 2002, 29: 3-11.
[5] IMAI H, OBATA Y, SEKIYAS, et al. Mitochondrial DNA markers confirm successful stocking of mud crab juveniles(Scylla paramamosain) into a natural population[J]. Suisan Zoshoku, 2002, 50: 149-156.
[6] IMAI H, CHENG J H, HAMASAKI K, et al. Identification of four mud crab species (genus Scylla) using ITS–1 and 16S rDNA markers [J]. Aquat Living Resour, 2004, 17: 31-34.
[7] KLINBUNGA S, BOONYAPALATEE A, PRATOOMCHAT B. Genetic diversity and species-diagnostic markers of mud crabs (genus Scylla) in eastern Thailand determined by RAPD analysis[J]. Mar Biotechno1, 2000, 2: 180-187.
[8] 高天翔, 王玉江, 刘进贤, 等. 三种青蟹线粒体12S rRNA基因序列分析[J]. 水产学报, 2005, 29(3): 313-317.
[9] 王玉江, 高天翔, 韩志强, 等. 中国和越南青蟹线粒体16S rRNA基因序列分析[J]. 中国海洋大学学报, 2005, 35(4): 554-558.
[10] 马凌波, 张凤英, 乔振国, 等. 中国东南沿海青蟹线粒体COI基因部分序列分析[J]. 水产学报, 2006, 30(4): 463-468.
[11] MA L B, ZHANG F Y, MA C Y, et al. Scylla paramamosain (Estampador) the most common mud crab (Genus Scylla) in China: evidence from mtDNA[J]. Aquac Res, 2006, 37: 1694-1698.
[12] 高天翔, 王玉江, 刘进贤, 等. 基于线粒体12S rRNA序列探讨4种青蟹系统发育关系及中国沿海青蟹的分类地位[J]. 中国海洋大学学报, 2007, 37(1): 57-60.
[13] 林琪, 李少菁, 黎中宝,等. 中国东南沿海青蟹属(Scylla)的种类组成[J]. 水产学报, 2007, 31(2): 211-219.
[14] 张凤英, 马凌波, 乔振国, 等. 青蟹线粒体COI 假基因的分离和特征分析[J]. 遗传, 2006, 28(1): 43-49.
[15] ROEHRDANZ R L. An improved primer for PCR amplification of mitochondrial amplification in a variety of insect species[J]. Insect Mol Bio1, 1993, 2: 89-91.
[16] GOPURENKO D, HUGHES J M. Regional patterns of genetic structure among Australian populations of the mud crab Scylla serrata (Crustacee: Decapoda): evidence from mitochondrial DNA[J]. Mar Freshw Res, 2002, 53: 849-857.
[17] TAMURA K, DUDLEY J, NEI M, et al. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Bio Evol, 2007, 24: 1596-1599.
[18] POSADA D, CRANDELL K A. Model test: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14: 817-818.
[19] SWOFFORD D L. PAUP*: Phylogenetic Analyses using Parsimony (and other methods), 4.0 Beta[S]. Sinauer Associates Incorporated, Sunderland, 2003.
[20] JOBB G, VON HAESELER A, STRIMMER K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics[J]. BMC Evol Biol, 2004, 4: 18.
[21] RONQUIST F, HUELSENBECK J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19: 1572-1574.
[22] CUMMINGS M P, OTTO S P, WAKELEY J. Sampling properties of DNA sequence data in phylogenetic analysis[J]. Mol Bio Evol, 1995, 12(5): 814-822.
[23] KIM J. General inconsistency conditions for maximum parsimony: Effects of branch lengths and increasing numbers of taxa[J]. Syst Bio, 1996, 45: 363-374.
[24] GRAYBEAL A. Is it better to add taxa or characters to a difficult phylogenetic problem?[J] Syst Bio, 1998, 47(1): 9-17.
[25] PRITCHARD JK, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.
[26] CORANDER J, MARTTINEN P. Bayesian identification of admixture events using multilocus molecular markers[J]. Mol Ecol, 2006, 15(10): 2833-2843.
[27] KUHNER M K. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters[J]. Bioinformatics, 2006, 22(6): 768-770.
[28] HEY J, NIELSEN R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics[J]. Proc Natl Acad Sci USA, 2007, 104(8): 2785-2790.