Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (5): 133-140.doi: 10.11978/2021078CSTR: 32234.14.2021078
• Marine Biology • Previous Articles Next Articles
HE Qian1,2,3,4(), YU Xiaolei1,2,3,4, LIANG Yuxian1,2,3, ZHANG Zhe1,2,3,4, HUANG Hui1,2,3, ZHOU Weihua1,2,3(
), YUAN Xiangcheng1,2,3(
)
Received:
2021-06-22
Revised:
2021-08-26
Online:
2022-09-10
Published:
2021-08-27
Contact:
ZHOU Weihua, YUAN Xiangcheng
E-mail:heqian19@mails.ucas.ac.cn;whzhou@scsio.ac.cn;xcyuan@scsio.ac.cn
Supported by:
CLC Number:
HE Qian, YU Xiaolei, LIANG Yuxian, ZHANG Zhe, HUANG Hui, ZHOU Weihua, YUAN Xiangcheng. Effects of warming on the metabolism and photosynthetic physiology of the symbiotic algae of two morphological types of Galaxea fascicularis[J].Journal of Tropical Oceanography, 2022, 41(5): 133-140.
[1] | 匡志远, 宋振亚, 董昌明, 2020. 基于机器学习订正模型的未来百年全球海表温度预估研究[J]. 气候变化研究快报, 9(4): 270-284. |
KUANG ZHIYUAN, SONG ZHENYA, DONG CHANGMING, 2020. Study on the future projection of global sea surface temperature over 21st century using a biases correction model based on machine learning[J]. Climate Change Research Letters, 9(4): 270-284. (in Chinese with English abstract)
doi: 10.12677/CCRL.2020.94031 |
|
[2] |
梁宇娴, 俞晓磊, 郭亚娟, 等, 2020. 3种传统方法对不同珊瑚表面积测量的适用性及其校准方法——以3D扫描技术为基准[J]. 热带海洋学报, 39(1): 85-93.
doi: 10.11978/2019039 |
LIANG YUXIAN, YU XIAOLEI, GUO YAJUAN, et al, 2020. Applicability and calibration methods of three traditional surface area measurement methods for different coral species — based on 3D scanning technology[J]. Journal of Tropical Oceanography, 39(1): 85-93. (in Chinese with English abstract)
doi: 10.11978/2019039 |
|
[3] | 吴英, 2018. 丛生盔形珊瑚(Galaxea fascicularis)两种形态型的结构特征与生长特性的比较分析[D]. 海口: 海南大学. |
WU YING, 2018. Comparison and analysis of the structural characteristics and growth characteristics of two morphological types of Galaxea fascicularis[D]. Haikou: Hainan University. (in Chinese with English abstract) | |
[4] | 俞晓磊, 江雷, 罗勇, 等, 2019. 异养营养对丛生盔形珊瑚代谢及共生藻光合生理的影响[J]. 海洋科学, 43(12): 81-88. |
YU XIAOLEI, JIANG LEI, LUO YONG, et al, 2019. Effects of heterotrophy on the metabolism and symbiont photosynthetic physiology of Galaxea fascicularis[J]. Marine Sciences, 43(12): 81-88. (in Chinese with English abstract) | |
[5] |
ANTHONY K R N, HOEGH-GULDBERG O, 2003. Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys?[J]. Functional Ecology, 17(2): 246-259.
doi: 10.1046/j.1365-2435.2003.00731.x |
[6] |
BAUMANN J, GROTTOLI A G, HUGHES A D, et al, 2014. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage[J]. Journal of Experimental Marine Biology and Ecology, 461: 469-478.
doi: 10.1016/j.jembe.2014.09.017 |
[7] |
BENNETT S, DUARTE C M, MARBÀ N, et al, 2019. Integrating within-species variation in thermal physiology into climate change ecology[J]. Philosophical Transactions of the Royal Society B: biological Sciences, 374(1778): 20180550.
doi: 10.1098/rstb.2018.0550 |
[8] |
BISCÉRÉ T, LORRAIN A, RODOLFO-METALPA R, et al, 2017. Nickel and ocean warming affect scleractinian coral growth[J]. Marine Pollution Bulletin, 120(1-2): 250-258.
doi: S0025-326X(17)30411-3 pmid: 28526200 |
[9] |
BOVE C B, UMBANHOWAR J, CASTILLO K D, 2020. Meta-analysis reveals reduced coral calcification under projected ocean warming but not under acidification across the Caribbean Sea[J]. Frontiers in Marine Science, 7: 127.
doi: 10.3389/fmars.2020.00127 |
[10] |
COLOMBO-PALLOTTA M F, RODRÍGUEZ-ROMÁN A, IGLESIAS-PRIETO R, 2010. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol[J]. Coral Reefs, 29(4): 899-907.
doi: 10.1007/s00338-010-0638-x |
[11] |
DA SILVAFONSECA J, DE BARROSMARANGON I L F, MARQUES J A, et al, 2017. Effects of increasing temperature alone and combined with copper exposure on biochemical and physiological parameters in the zooxanthellate scleractinian coral Mussismilia harttii[J]. Aquatic Toxicology, 190: 121-132.
doi: 10.1016/j.aquatox.2017.07.002 |
[12] |
DARLING E S, ALVAREZ‐FILIP L, OLIVER T A, et al, 2012. Evaluating life-history strategies of reef corals from species traits[J]. Ecology Letters, 15(12): 1378-1386.
doi: 10.1111/j.1461-0248.2012.01861.x pmid: 22938190 |
[13] |
DIAS M, FERREIRA A, GOUVEIA R, et al, 2018. Synergistic effects of warming and lower salinity on the asexual reproduction of reef-forming corals[J]. Ecological Indicators, 98: 334-348.
doi: 10.1016/j.ecolind.2018.11.011 |
[14] |
DÍAZ-ALMEYDA E M, PRADA C, OHDERA A H, et al, 2017. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates[J]. Proceedings of the Royal Society B: Biological Sciences, 284(1868): 20171767.
doi: 10.1098/rspb.2017.1767 |
[15] |
DUNN S R, BYTHELL J C, LE TISSIER M D A, et al, 2002. Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp.[J]. Journal of Experimental Marine Biology and Ecology, 272(1): 29-53.
doi: 10.1016/S0022-0981(02)00036-9 |
[16] |
ENRÍQUEZ S, MÉNDEZ E R, HOEGH-GULDBERG O, et al, 2017. Key functional role of the optical properties of coral skeletons in coral ecology and evolution[J]. Proceedings of the Royal Society B: Biological Sciences, 284(1853): 20161667.
doi: 10.1098/rspb.2016.1667 |
[17] |
GIBBIN E M, KRUEGER T, PUTNAM H M, et al, 2018. Short-term thermal acclimation modifies the metabolic condition of the coral holobiont[J]. Frontiers in Marine Science, 5: 10.
doi: 10.3389/fmars.2018.00010 |
[18] |
GROVER R, MAGUER J F, ALLEMAND D, et al, 2008. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata[J]. Journal of Experimental Biology, 211(6): 860-865.
doi: 10.1242/jeb.012807 |
[19] |
HAGEDORN M, CARTER V L, LAGER C, et al, 2016. Potential bleaching effects on coral reproduction[J]. Reproduction, Fertility and Development, 28(8): 1061-1071.
doi: 10.1071/RD15526 |
[20] |
HUGHES A D, GROTTOLI A G, 2013. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?[J]. PLoS One, 8(11): e81172.
doi: 10.1371/journal.pone.0081172 |
[21] |
HUGHES T P, ANDERSON K D, CONNOLLY S R, et al, 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 359(6371): 80-83.
doi: 10.1126/science.aan8048 pmid: 29302011 |
[22] |
INNIS T, ALLEN-WALLER L, BROWN K T, et al, 2021. Marine heatwaves depress metabolic activity and impair cellular acid-base homeostasis in reef-building corals regardless of bleaching susceptibility[J]. Global Change Biology, 27(12): 2728-2743.
doi: 10.1111/gcb.15622 |
[23] |
KING N G, MCKEOWN N J, SMALE D A, et al, 2018. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes[J]. Ecography, 41(9): 1469-1484.
doi: 10.1111/ecog.03186 |
[24] |
LIN ZHENYUE, CHEN MINGLIANG, DONG XU, et al, 2017. Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners[J]. Scientific Reports, 7: 42100.
doi: 10.1038/srep42100 |
[25] |
LOHR K E, PATTERSON J T, 2017. Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816)[J]. Journal of Experimental Marine Biology and Ecology, 486: 87-92.
doi: 10.1016/j.jembe.2016.10.005 |
[26] | MARTA D, 2020. Vulnerability of reef-building corals towards global change[D]. Lisboa: Universidade de Lisboa, Faculdade de Ciências. |
[27] | MIDDLEBROOK R, ANTHONY K R N, HOEGH-GULDBERG O, et al, 2012. Thermal priming affects symbiont photosynthesis but does not alter bleaching susceptibility in Acropora millepora[J]. Journal of Experimental Marine Biology and Ecology, 432-433: 64-72. |
[28] | MITTERER R M, 1978. Amino acid composition and metal binding capability of the skeletal protein of corals[J]. Bulletin of Marine Science, 28(1): 173-180. |
[29] |
MOBERG F, FOLKE C, 1999. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 29(2): 215-233.
doi: 10.1016/S0921-8009(99)00009-9 |
[30] |
MUSCATINE L, MCCLOSKEY L R, MARIAN R E, 1981. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration[J]. Limnology and Oceanography, 26(4): 601-611.
doi: 10.4319/lo.1981.26.4.0601 |
[31] |
NAKAJIMA Y, SHINZATO C, SATOH N, et al, 2015. Novel polymorphic microsatellite markers reveal genetic differentiation between two sympatric types of Galaxea fascicularis[J]. PLoS One, 10(7): e0130176.
doi: 10.1371/journal.pone.0130176 |
[32] |
NAKAJIMA Y, ZAYASU Y, SHINZATO C, et al, 2016. Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands, Japan[J]. Ecology and Evolution, 6(5): 1457-1469.
doi: 10.1002/ece3.1981 |
[33] |
RAZAK T B, ROFF G, LOUGH J M, et al, 2020. Growth responses of branching versus massive corals to ocean warming on the Great Barrier Reef, Australia[J]. Science of the Total Environment, 705: 135908.
doi: 10.1016/j.scitotenv.2019.135908 |
[34] |
RODOLFO-METALPA R, MARTIN S, FERRIER-PAGÈS C, et al, 2010. Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD[J]. Biogeosciences, 7(1): 289-300.
doi: 10.5194/bg-7-289-2010 |
[35] |
SAMIEI J V, SALEH A, MEHDINIA A, et al, 2015. Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations[J]. PeerJ, 3: e1062.
doi: 10.7717/peerj.1062 |
[36] |
SCHOEPF V, GROTTOLI A G, LEVAS S J, et al, 2015. Annual coral bleaching and the long-term recovery capacity of coral[J]. Proceedings of the Royal Society B: Biological Sciences, 282(1819): 20151887.
doi: 10.1098/rspb.2015.1887 |
[37] | TOTH L T, STATHAKOPOULOS A, KUFFNER I B, et al, 2019. The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage[J]. Ecology, 100(9): e02781. |
[38] | VIMALA T, POONGHUZHALI T V, 2015. Estimation of pigments from seaweeds by using acetone and DMSO[J]. International Journal of Science and Research, 4(10): 1850-1854. |
[39] | WANGPRASEURT D, HOLM J B, LARKUM A W D, et al, 2017. In vivo microscale measurements of light and photosynthesis during coral bleaching: evidence for the optical feedback loop?[J]. Frontiers in Microbiology, 8: 59. |
[40] |
WEPFER P H, NAKAJIMA Y, HUI F K C, et al, 2020. Metacommunity ecology of Symbiodiniaceae hosted by the coral Galaxea fascicularis[J]. Marine Ecology Progress Series, 633: 71-87.
doi: 10.3354/meps13177 |
[41] |
WOOLDRIDGE S A, 2014. Assessing coral health and resilience in a warming ocean: why looks can be deceptive[J]. BioEssays, 36(11): 1041-1049.
doi: 10.1002/bies.201400074 pmid: 25303686 |
[42] |
XU SHENDONG, YU KEFU, TAO SHICHEN, et al, 2018. Evidence for the thermal bleaching of Porites corals from 4.0 ka B.P. in the northern South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 123(1): 79-94.
doi: 10.1002/2017JG004091 |
[1] | ZHOU Weihua, LI Yingxin, GUO Yajuan, HUO Jiaxin, SONG Yan, ZHU Qing, YUAN Xiangcheng, LIU Sheng, HUANG Hui. Effects of ocean acidification and warming on the growth and calcification of two reef-building corals* [J]. Journal of Tropical Oceanography, 2024, 43(3): 49-57. |
[2] | SUN Wenjie, LI Jiamin, WANG Hualong, MI Tiezhu, ZHEN Yu. Transcriptomic analysis of fatty acid metabolism in the Thalassiosira pseudonana under low salinity stress [J]. Journal of Tropical Oceanography, 2023, 42(5): 92-103. |
[3] | WANG Weiqiang, ZHANG Xiya, XU Kang, LI Junling, MIAO Haoyu. Assessment of El Niño diversity simulations using CMIP6 and CMIP5 models* [J]. Journal of Tropical Oceanography, 2023, 42(2): 21-33. |
[4] | YANG Fangfang, XIAO Zhiliang, WEI Zhangliang, HUANG Yi, LONG Lijuan. The effects of ocean acidification and warming on the growth and calcification in coralline alga Porolithon cf. onkodes [J]. Journal of Tropical Oceanography, 2023, 42(1): 87-97. |
[5] | TANG Ling, NIE Yuhua, WANG Ping, TANG Chaolian. Trend analysis of marine heatwaves variability in the outer Pearl River estuary from 1974 to 2020 [J]. Journal of Tropical Oceanography, 2022, 41(6): 143-150. |
[6] | LIU Xiaoju, SHI Qi, TAO Shichen, YANG Hongqiang, ZHANG Xiyang, ZHOU Shengnan. The growth rate of coral Porites at the Zhongbei Ansha of the Zhongsha Atoll and its response to the seawater temperature change in the past 165 Years [J]. Journal of Tropical Oceanography, 2022, 41(5): 64-73. |
[7] | ZHANG Zhe, YU Xiaolei, LIANG Yuxian, HE Qian, HUANG Hui, YUAN Xiangcheng, ZHOU Weihua. Effect of ocean warming on the physiology of azooxanthellate coral–Cladopsammia sp.* [J]. Journal of Tropical Oceanography, 2022, 41(5): 141-149. |
[8] | ZHU Wentao, XIA Jingquan, LIU Xiangbo, YIN Hongyang, ZHU Ming, REN Yuxiao, XIE Minrui, HUANG Jianzhong, LI Xiubao. Analysis of photosynthetic physiology and symbiotic fungi community in Galaxea fascicularis [J]. Journal of Tropical Oceanography, 2022, 41(2): 132-141. |
[9] | ZHU Xinyuan, LIU Min, HUANG Ying, ZHAO Zhe. Effects of the ferric enterobactin receptor regulator VPA0148 on virulence of Vibrio parahaemolyticus [J]. Journal of Tropical Oceanography, 2021, 40(6): 93-101. |
[10] | Fuwu XIE, Xingyu SONG, Yehui TAN, Meiting TAN, Yadong HUANG, Huaxue LIU. Impact of simulated warming and nutrients input on plankton community metabolism in Daya Bay* [J]. Journal of Tropical Oceanography, 2019, 38(2): 48-57. |
[11] | Caijing HUANG, Qiang XIE, Ju CHEN, Yeqiang SHU, Lingfang CHEN. Bottom-water warming in the Philippine Sea between 1990s and 2010s [J]. Journal of Tropical Oceanography, 2018, 37(6): 26-32. |
[12] | Yanping SHI, Yan DU, Zesheng CHEN. Impacts of Northwest Pacific anomalous anticyclone on sea surface height and circulation [J]. Journal of Tropical Oceanography, 2017, 36(4): 10-17. |
[13] | Lianghong LÜ, Xiaotong ZHENG. The effect of Indian Ocean Basin mode on Indian Summer Monsoon Rainfall in decaying year of El Niño [J]. Journal of Tropical Oceanography, 2017, 36(2): 1-11. |
[14] | Mengyan CHEN, Xin WANG, Qinyan LIU, Wei TAN. Different SST seasonally variability in the South China Sea during the decaying year of the two types of El Niño [J]. Journal of Tropical Oceanography, 2017, 36(1): 1-8. |
[15] | LIN Rui, ZHANG Cai-yun, LI Yan. Satellite observation of the temporal and spatial variation of sea surface diurnal warming in the South China Sea [J]. Journal of Tropical Oceanography, 2014, 33(2): 17-27. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 750
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 799
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|