Journal of Tropical Oceanography ›› 2019, Vol. 38 ›› Issue (4): 10-19.doi: 10.11978/2018114CSTR: 32234.14.2018114
• Marine Hydrography • Previous Articles Next Articles
Yiling ZHENG1,2,Zesheng CHEN1,Hai WANG3,Yan DU1,2()
Received:
2018-11-05
Revised:
2019-01-04
Online:
2019-07-20
Published:
2019-07-21
Supported by:
Yiling ZHENG,Zesheng CHEN,Hai WANG,Yan DU. Features of 2015/2016 extreme El Niño event and its evolution mechanisms[J].Journal of Tropical Oceanography, 2019, 38(4): 10-19.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 3
Time-longitude sections of SSTA and surface zonal current anomalies. a, b, c) Time-longitude cross sections of SSTA averaged over 2°S-2°N for the CP, 1997/1998 and 2015/2016 events, respectively. The contour interval is 0.5°C. The time interval is one week. d, e, f) Time-longitude cross sections of surface zonal current anomalies averaged over 2°S-2°N for the CP, 1997/1998 and 2015/2016 events, respectively. The contour interval is 0.2 m·s-1. The time interval is one week"
Fig. 4
Time-longitude sections of surface zonal wind anomalies and SSHA. a, b, c) Time-longitude cross sections of surface zonal wind anomalies averaged over 2°S-2°N for the CP, 1997/1998 and 2015/2016 events, respectively. The contour interval is 4 m·s-1. The time interval is one week. d, e, f) Time-longitude cross sections of SSHA averaged over 2°S-2°N for the CP event, 1997/1998 event and 2015/2016 event, respectively. The contour interval is 0.1 m. The time interval is one week"
Fig. 5
Contributions of zonal advection feedback and thermocline feedback for the CP, 1997/1998 and 2015/2016 events, respectively. a) The changes of$-u'{{\bar{T}}_{x}}$ in four phases. b) The changes of$-\bar{w}T_{z}^{'}$ in four phases. The backgrounds of different colors represent different regions; they are Ni?o4 zone, Ni?o3.4 zone, Ni?o3 zone, and Ni?o1+2 zone, respectively. Phase I is the average of Feb and May 2015. Phase II is the average of Jun and Sep 2015. Phase III is the average of Oct 2015 and Jan 2016. Phase IV is the average of Feb and May 2016. The mixed layer depth is 50 m"
Fig. 7
The changes of warm water volume anomalies in the equatorial Pacific Ocean during 2014-2016. The blue line represents the warm water volume anomalies averaged over 5°S-5°N and 120°E-80°W, the red line represents the warm water volume anomalies averaged over 5°N-20°N and 120°E-80°W, the green line represents the warm water volume anomalies averaged over 5°S-20°S and 120°E-80°W. Calculation formula for warm water volume anomalies is $\iint{\frac{1}{\Delta \rho '\rho }\Delta h\Delta x\Delta y}$, where $\Delta h$ is SSHA, and$\Delta \rho '\rho =0.005$"
[1] |
李崇银, 穆穆, 周广庆 , 等. 2008. ENSO机理及其预测研究[J]. 大气科学, 32(4):761-781.
doi: 10.3878/j.issn.1006-9895.2008.04.06 |
LI CHONGYIN, MU MU, ZHOU GUANGQQING , et al. 2008. Mechanism and prediction of the ENSO. Chinese Journal of Atmospheric Sciences[J], 32(4):761-781(in Chinese with English abstract).
doi: 10.3878/j.issn.1006-9895.2008.04.06 |
|
[2] | 刘秦玉, 王启 . 1995. “暖池”表层对大气局地强迫的响应特征[J]. 海洋与湖沼, 26(6):658-664. |
LIU QINYU, WANG QI . 1995. The characteristics of “warm pool” surface layer responding to local atmospheric force[J]. Oceanologia Et Limnologia Sinica, 26(6):658-664(in Chinese with English abstract). | |
[3] | 骆高远 . 2000. 我国对厄尔尼诺、拉尼娜研究综述[J]. 地理科学, 20(3):264-269. |
LUO GAOYUAN . A general survey of the studies on El Niño and La Niña in China[J]. Scientia Geographica Sinica, 20(3):264-269(in Chinese with English abstract). | |
[4] | 蒲书箴, 于非, 赵新 , 等. 1998. 1997/1998厄尔尼诺的发生与发展[J]. 海洋学报, 20(6):124-131. |
PU SHUZHEN, YU FEI, ZHAO XIN, et al. Occurrence and evolution of 1997 /1998 El Niño. Acta Oceanologica Sinica, 20(6):124-131(in Chinese). | |
[5] | 任宏利, 王润, 翟盘茂 , 等. 2017. 超强厄尔尼诺事件海洋学特征分析与预测回顾[J]. 气象学报, 75(1):1-18. |
REN HONGLI, WANG RUN, ZHAI PANMAO , et al. 2017. Upper-ocean dynamical features and prediction of the super El Niño in 2015/2016: A comparison with 1982/1983 and 1997/1998. Acta Meteorologica Sinica, 75(1):1-18(in Chinese with English abstract). | |
[6] | 袁媛, 高辉, 贾小龙 , 等. 2016. 2014-2016年超强厄尔尼诺事件的气候影响[J]. 气象, 42(5):532-539. |
YUAN YUAN, GAO HUI, JIA XIAOLONG , et al. 2016. Influences of the 2014- 2016 Super El Nino event on climate[J]. Meteorological Monthly, 42(5):532-539(in Chinese with English abstract). | |
[7] |
ABELLAN E, MCGREGOR S, ENGLAND M H , et al. 2018. Distinctive role of ocean advection anomalies in the development of the extreme 2015-16 El Niño[J]. Climate Dynamics, 51(5-6):2191-2208.
doi: 10.1007/s00382-017-4007-0 |
[8] |
ATLAS, R, HOFFMAN R N, BLOOM S C , et al. 1996. A multiyear global surface wind velocity data set using SSM/I wind observations[J]. Bulletin of the American Meteorological Society, 77:869-882.
doi: 10.1175/1520-0477(1996)0770869:AMGSWV2.0.CO;2 |
[9] |
BJERKNES J . 1969. Atmospheric teleconnections from the equatorial Pacific[J]. Monthly Weather Review, 97:163-172.
doi: 10.1175/1520-0493(1969)0970163:ATFTEP2.3.CO;2 |
[10] | CHANG PING, ZHANG LI, SARAVANAN R , et al. 2007. Pacific meridional mode and El Niño-Southern Oscillation[J]. Geophysical Research Letters, 34(16):130-144. |
[11] |
CHEN D, LIAN TAO, FU C , et al. 2015. Strong influence of westerly wind bursts on El Niño diversity[J]. Nature Geoscience, 8(5):339-345.
doi: 10.1038/ngeo2399 |
[12] |
CHEN ZESHENG, DU YAN, WEN ZHIPING , et al. 2018. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming[J]. Climate Dynamics, 50(11-12):4707-4719.
doi: 10.1007/s00382-017-3899-z |
[13] |
CHIANG J C H, VIMONT D J . 2004. Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability*[J]. Journal of Climate, 17(21):4143-4158.
doi: 10.1175/JCLI4953.1 |
[14] |
CHIODI A M, HARRISON D E . 2013. El Niño impacts on seasonal U. S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-Event perspective*[J]. Journal of Climate, 26(3):822-837.
doi: 10.1175/JCLI-D-12-00097.1 |
[15] |
JIN FEIFEI . 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model.[J]. Journal of Atmospheric Sciences, 54(7):811-829.
doi: 10.1175/1520-0469(1997)0540811:AEORPF2.0.CO;2 |
[16] |
KALNAY E, KANAMITSU M, KISTLER R , et al. 1996. The NCEP/NCAR 40-year reanalysis project.[J]. Bulletin of the American Meteorological Society, 77(3):437-472.
doi: 10.1175/1520-0477(1996)0770437:TNYRP2.0.CO;2 |
[17] |
KAO HSUNYING, YU JINYU . 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO.[J]. Journal of Climate, 22(3):615-632.
doi: 10.1175/2008JCLI2309.1 |
[18] |
KUG J S, JIN FEIFEI, AN S I . 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño[J]. Journal of Climate, 22(22):1499-1515.
doi: 10.1175/2008JCLI2624.1 |
[19] | LEE T, MCPHADEN M J . 2010. Increasing intensity of El Niño in the central-Equatorial Pacific[J]. Geophysical Research Letters, 37(14):L16608. DOI: 10.1029/2007GL030302. |
[20] |
LENGAIGNE M, GUILYARDI E, BOULANGER J , et al. 2004. Triggering of El Niño by westerly wind events in a coupled general circulation model[J]. Climate Dynamics, 23(6):601-620.
doi: 10.1007/s00382-004-0457-2 |
[21] |
LIM Y, KOVACH R, PAWSON S , et al. 2017. The 2015/16 El Niño event in context of the MERRA-2 reanalysis: A comparison of the tropical Pacific with 1982/83 and 1997/98[J]. Journal of Climate, 30(13):4819-4842.
doi: 10.1175/JCLI-D-16-0800.1 |
[22] |
MCPHADEN M J, BUSALACCHI A J, CHENEY R , et al. 1998. The Tropical Ocean-Global Atmosphere observing system: A decade of progress[J]. Journal of Geophysical Research Oceans, 103(C7):14169-14240.
doi: 10.1029/97JC02906 |
[23] | PAEK H, YU JINYI, QIAN CHENGCHENG . 2017. Why were the 2015/16 and 1997/98 extreme El Niños different?[J]. Geophysical Research Letters, 44(4):1848-1856. |
[24] |
PALMEIRO F M, IZA M, BARRIOPEDRO D , et al. 2017. The complex behavior of El Niño winter 2015-2016[J]. Geophysical Research Letters, 44(6):2902-2910.
doi: 10.1002/2017GL072920 |
[25] |
REYNOLDS R W, RAYNER N A, SMITH T M , et al. 2002. An improved in situ and satellite SST analysis for climate[J]. Journal of Climate, 15(13):1609-1625.
doi: 10.1175/1520-0442(2002)0151609:AIISAS2.0.CO;2 |
[26] |
SAHA S, NADIGA S, THIAW C , et al. 2006. The NCEP climate forecast system[J]. Journal of Climate, 19:3483-3517.
doi: 10.1175/JCLI3812.1 |
[27] |
SANTOSO A, MCPHADEN M J, CAI WENJU . 2017. The defining characteristics of ENSO extremes and the strong 2015/16 El Niño[J]. Reviews of Geophysics, 55(4):1079-1129.
doi: 10.1002/rog.v55.4 |
[28] | SCHOPF P S, SUAEZ M J . 1987. Vacillations in a coupled ocean-atmospheric model[J]. Journal of the Atmospheric Sciences, 45:549-566. |
[29] |
VIMONT D J, BATTISTI D S, HIRST A C . 2001. Footprinting: A seasonal connection between the tropics and mid‐latitudes[J]. Geophysical Research Letters, 28(20):3923-3926.
doi: 10.1029/2001GL013435 |
[30] |
VIMONT D J, WALLANCE J M, BATTISTI D S . 2003. The seasonal footprinting mechanism in the Pacific: Implications for ENSO*[J]. Journal of Climate, 16(16):2668-2675.
doi: 10.1175/1520-0442(2003)0162668:TSFMIT2.0.CO;2 |
[31] |
VIMONT D J, ALEXANDER M, FONTAINE A . 2009. Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality[J]. Journal of Climate, 22(3):518-534.
doi: 10.1175/2008JCLI2220.1 |
[32] | WYRTKI K, KENDALL R . 1976. Transports of the Pacific equatorial countercurrent[J]. Journal of Geophysical Research, 72(8):2073-2076. |
[33] | Organization W M . 2016. WMO statement on the status of the global climate in 2015[J]. Environmental Policy Collection, 40(2):144-151. |
[34] |
XIE SHANGPING, PHILANDER S G . 1994. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific[J]. Tellus A, 46(4):340-350.
doi: 10.3402/tellusa.v46i4.15484 |
[35] |
XIE SHANGPING, PENG QIHUA, KAMAE Y , et al. 2018. Eastern Pacific ITCZ dipole and ENSO diversity[J]. Journal of Climate, 31(11):4449-4462.
doi: 10.1175/JCLI-D-17-0905.1 |
[36] | YEH S, KIRTMAN B P . 2004. The North Pacific Oscillation- ENSO and internal atmospheric variability[J]. Geophysical Research Letters, 31(13):137-151. |
[37] |
YEH S W, KUG J S, DEWITTE B , et al. 2009. El Niño in a changing climate. Nature, 461:511-514.
doi: 10.1038/nature08316 |
[38] | YU JINYI, KAO H Y, LEE T , et al. 2011a . Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events[J]. Theoretical & Applied Climatology, 103(3-4):337-344. |
[39] |
YU JINYI, KIM S T . 2011b . Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO[J]. Journal of Climate, 24(3):708-720.
doi: 10.1175/2010JCLI3688.1 |
[1] | SUN Zeming, HAN Shuzong, WANG Mingjie, SU Hanxiang. Statistical study on the influence of typhoon with different path on the temperature of coastal waters of China [J]. Journal of Tropical Oceanography, 2024, 43(5): 17-31. |
[2] | ZHAO Minghui, YUAN Ye, ZHANG Jiazheng, ZHANG Cuimei, GAO Jinwei, WANG Qiang, SUN Zhen, CHENG Jinhui. New developments on the rift-breakup of the continent-ocean transition zone in the northern margin of the South China Sea [J]. Journal of Tropical Oceanography, 2024, 43(2): 173-183. |
[3] | MU Rong, ZHU Zhu, ZHANG Ruifeng. Adaptive mechanisms of iron limitation on the marine Synechococcus based on comparative genomics [J]. Journal of Tropical Oceanography, 2023, 42(6): 89-100. |
[4] | YANG Fang, JIANG Ran, YANG Liling, LIU Bingjun. Spatial characteristics and formation mechanisms of hypoxia zone in Macao Inner Harbor [J]. Journal of Tropical Oceanography, 2021, 40(6): 52-62. |
[5] | LI Yan, WU Nan, HU Shouxiang, ZHAO Fang, ZHAN Wenhuan. Seismic characteristics and triggering mechanism analysis of two types of mass-transport complexes in the southeast of Baiyun Sag, South China Sea [J]. Journal of Tropical Oceanography, 2021, 40(5): 85-100. |
[6] | WANG Ling, WANG Bin, LI Jian, YU Kaiqi, ZHAO Fang. Morphology characteristics and formation mechanisms of submarine pockmarks in the northern Zhongjiannan Basin, South China Sea [J]. Journal of Tropical Oceanography, 2021, 40(5): 72-84. |
[7] | SONG Jinming, WANG Qidong. New understanding about Chemical Oceanography in the South China Sea since 1980 [J]. Journal of Tropical Oceanography, 2021, 40(3): 15-24. |
[8] | Ken MENG, Huawei QIN, Xinke ZHU, Fei HOU. Design and test of a new mobile submersible deep-sea seismic recording system [J]. Journal of Tropical Oceanography, 2020, 39(3): 49-56. |
[9] | YAN Dong, SONG Dehai, BAO Xianwen. Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season [J]. Journal of Tropical Oceanography, 2020, 39(1): 20-35. |
[10] | Ning LI, Xiaochun WANG. Diagnostic analysis of upper-ocean heat content change in the equatorial Pacific and related mechanism [J]. Journal of Tropical Oceanography, 2019, 38(1): 1-10. |
[11] | Jiazheng ZHANG, Jianping ZHOU, Minghui ZHAO, Xuelin QIU. Progress and prospect of anisotropic study of hydrothermal field (49º39'E) on the Southwest Indian Ridge [J]. Journal of Tropical Oceanography, 2017, 36(6): 71-81. |
[12] | Chunhui XIAO, Yonghong WANG, Jian LIN. Research progress on ocean trench sedimentation [J]. Journal of Tropical Oceanography, 2017, 36(6): 27-38. |
[13] | Yingci FENG, Wenhuan ZHAN, Jie SUN, Yantao YAO, Lei GUO, Mei CHEN. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene [J]. Journal of Tropical Oceanography, 2017, 36(3): 73-79. |
[14] | LIN Xiao-gang, QI Yi-quan, CHENG Xu-hua. Hydrographical features in the Eastern Indian Ocean during March-May [J]. Journal of Tropical Oceanography, 2014, 33(3): 1-9. |
[15] | GAO Fei, ZHANG Ren, LI Can, HOU Tai-ping, LIU Chen-zhao, WANG Yong. Analysis of the characteristics of temperature and thermocline in the ocean east of Taiwan based on gridded Argo data [J]. Journal of Tropical Oceanography, 2014, 33(1): 17-25. |
|