[1] |
路荣昭, 王淑芝, 关志英, 等, 1991. 聚球藻(Synechococcus leopoliensis 625)藻胆体-类囊体膜光谱特性和光能传递的研究[J]. 水生生物学报, 15(4): 368-371.
|
|
LU RONGZHAO, WANG SHUZHI, GUAN ZHIYING, et al, 1991. Studies on the spectroscopic properties and energy transfer of phycobilisome-thylakoid of Synechococcus leopoliensis 625[J]. Acta Hydrobiologica Sinica, 15(4): 368-371. (in Chinese with English abstract)
|
[2] |
马英, 焦念志, 2004. 聚球藻(Synechococcus)分子生态学研究进展[J]. 自然科学进展, 14(9): 967-972.
|
|
MA YING, JIAO NIANZHI, 2004. Progress in molecular ecology of Synechococcus[J]. Progress in Natural Science, 14(9): 967-972. (in Chinese with English abstract)
|
[3] |
AHLGREN N A, ROCAP G, 2006. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies[J]. Applied and Environmental Microbiology, 72(11): 7193-7204.
doi: 10.1128/AEM.00358-06
|
[4] |
CALLIERI C, STOCKNER J G, 2002. Freshwater autotrophic picoplankton: a review[J]. Journal of Limnology, 61(1): 1-14.
|
[5] |
CELEPLI N, SUNDH J, EKMAN M, et al, 2017. Meta-omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation[J]. Environmental Microbiology, 19(2): 673-686.
doi: 10.1111/emi.2017.19.issue-2
|
[6] |
DESHNIUM P, LOS D A, HAYASHI H, et al, 1995. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress[J]. Plant Molecular Biology, 29(5): 897-907.
doi: 10.1007/BF00014964
|
[7] |
EVERROAD R C, WOOD A M, 2012. Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria[J]. Molecular Phylogenetics and Evolution, 64(3): 381-392.
doi: 10.1016/j.ympev.2012.04.013
|
[8] |
FULLER N J, MARIE D, PARTENSKY F, et al, 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea[J]. Applied and Environmental Microbiology, 69(5): 2430-2443.
doi: 10.1128/AEM.69.5.2430-2443.2003
|
[9] |
GUILLARD R R L, RYTHER J H, 1962. Studies of marine planktonic diatoms: Ⅰ. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran[J]. Canadian Journal of Microbiology, 8(2): 229-239.
doi: 10.1139/m62-029
|
[10] |
HERDMAN M, CASTENHOLZ RW, WATERNURY J B, et al, 2001. Form-genus ⅩⅢ. Synechococcus[M]//BOONE D R, CASTENHOLZ R W. Bergey’s Manual of Systematic Bacteriology. New York, NY: Springer-Verlag, 508-512.
|
[11] |
KUMAR S, STECHER G, TAMURA K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054
|
[12] |
LUDWIG M, BRYANT D A, 2012. Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions[J]. Frontiers in Microbiology, 3: 354, doi: 10.3389/fmicb.2012. 00354.
doi: 10.3389/fmicb.2012. 00354
|
[13] |
MARSAN D, PLACE A, FUCICH D, et al, 2017. Toxin-Antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors[J]. Frontiers in Microbiology, 8: 1213, doi: 10.3389/fmicb.2017.01213.
doi: 10.3389/fmicb.2017.01213
|
[14] |
MOORE L R, POST A F, ROCAP G, et al, 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus[J]. Limnology and Oceanography, 47(4): 989-996.
doi: 10.4319/lo.2002.47.4.0989
|
[15] |
MÜHLING M, FULLER N J, MILLARD A, et al, 2005. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton[J]. Environmental Microbiology, 7(4): 499-508.
doi: 10.1111/emi.2005.7.issue-4
|
[16] |
PALENIK B, BRAHAMSHA B, LARIMER F W, et al, 2003. The genome of a motile marine Synechococcus[J]. Nature, 424(6952): 1037-1042.
doi: 10.1038/nature01943
|
[17] |
ROCAP G, DISTEL D L, WATERBURY J B, et al, 2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences[J]. Applied and Environmental Microbiology, 68(3): 1180-1191.
doi: 10.1128/AEM.68.3.1180-1191.2002
|
[18] |
SIX C, THOMAS J C, GARCZAREK L, et al, 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study[J]. Genome Biology, 8(12): R259.
doi: 10.1186/gb-2007-8-12-r259
|
[19] |
WANG KUI, WOMMACK K E, CHEN FENG, 2011. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay[J]. Applied and Environmental Microbiology, 77(21): 7459-7468.
doi: 10.1128/AEM.00267-11
|
[20] |
XIA XIAOMIN, VIDYARATHNA N K, PALENIK B, et al, 2015. Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong[J]. Applied and Environmental Microbiology, 81(21): 7644-7655.
doi: 10.1128/AEM.01895-15
|
[21] |
XIA XIAOMIN, GUO WANG, TAN SHANGJIN, et al, 2017. Synechococcus assemblages across the salinity gradient in a salt wedge estuary[J]. Frontiers in Microbiology, 8: 1254, doi: 10.3389/fmicb.2017.01254.
doi: 10.3389/fmicb.2017.01254
|
[22] |
XIA XIAOMIN, LIU HONGBIN, CHOI D, et al, 2018. Variation of Synechococcus pigment genetic diversity along two turbidity gradients in the China Seas[J]. Microbial Ecology, 75(1): 10-21.
doi: 10.1007/s00248-017-1021-z
|
[23] |
XIA XIAOMIN, CHEUNG S, ENDO H, et al, 2019. Latitudinal and vertical variation of Synechococcus assemblage composition along 170° W transect from the South Pacific to the Arctic Ocean[J]. Microbial Ecology, 77(2): 333-342.
doi: 10.1007/s00248-018-1308-8
|
[24] |
XIA XIAOMIN, LEE P, CHEUNG S, et al, 2020. Discovery of euryhaline phycoerythrobilin-containing Synechococcus and its mechanisms for adaptation to estuarine environments[J]. mSystems, 5(6): e00842-20.
|
[25] |
YAMANAKA G, GLAZER A N, 1981. Dynamic aspects of phycobilisome structure: modulation of phycocyanin content of Synechococcus phycobilisomes[J]. Archives of Microbiology, 130(1): 23-30.
doi: 10.1007/BF00527067
|