[1] |
匡晓迪, 王兆毅, 张苗茵, 等, 2016. 基于BP神经网络方法的近岸数值海温预报释用技术[J]. 海洋与湖沼, 47(6): 1107-1115.
|
|
KUANG XIAODI, WANG ZHAOYI, ZHANG MIAOYIN, et al, 2016. An interpretation scheme of numerical near-shore sea-water temperature forecast based on BPNN[J]. Oceanologia et Limnologia Sinica, 47(6): 1107-1115 (in Chinese with English abstract).
|
[2] |
李燕, 张建华, 刘钦政, 等, 2007. 单站海温短期预报自动化[J]. 海洋预报, 2007, 24(4): 33-41.
|
|
LI YAN, ZHANG JIANHUA, LIU QINZHENG, et al, 2007. The automation of single sea station's surface sea temperature short term forecasting[J]. Marine Forecasts, 24(4): 33-41 (in Chinese with English abstract).
|
[3] |
王兆毅, 李云, 王旭, 2020. 中国近岸海域基础预报单元海温预报指导产品研制[J]. 海洋预报, 37(4): 59-65.
|
|
WANG ZHAOYI, LI YUN, WANG XU, 2020. Development of forecast guidance product for sea temperature of basic forecast units in the Chinese coastal waters[J]. Marine Forecasts, 37(4): 59-65 (in Chinese with English abstract).
|
[4] |
许金电, 蔡尚湛, 宣莉莉, 等, 2014. 粤东至闽南沿岸海域夏季上升流的调查研究[J]. 热带海洋学报, 33(2): 1-9.
doi: 10.11978/j.issn.1009-5470.2014.02.001
|
|
XU JINDIAN, CAI SHANGZHAN, XUAN LILI, et al, 2014. Observational study on summertime upwelling in coastal seas between eastern Guangdong and southern Fujian[J]. Journal of Tropical Oceanography, 33(2): 1-9 (in Chinese with English abstract).
|
[5] |
张建华, 2003. 海温预报知识讲座第一讲: 海水温度预报概况[J]. 海洋预报, 20(4): 81-85 (in Chinese).
|
[6] |
张建华, 2004. 海温预报知识讲座第二讲: 数理统计方法在海温预报中的应用[J]. 海洋预报, 21(1): 85-90.
|
|
ZHANG JIANHUA, 2004. Lecture on sea surface temperature prediction: lecture 2 application of mathematical Statistics method in sea surface temperature prediction[J]. Marine Forecasts, 21(1): 85-90 (in Chinese with English abstract).
|
[7] |
张雪薇, 韩震, 2022. 基于ConvGRU深度学习网络模型的海表面温度预测[J]. 大连海洋大学学报, 37(3): 531-538.
|
|
ZHANG XUEWEI, HAN ZHEN, 2022. Prediction of sea surface temperature based on ConvGRU deep learning network model[J]. Journal of Dalian Ocean University, 37(3): 531-538 (in Chinese with English abstract).
|
[8] |
张云翼, 江毓武, 2012. 汕尾外侧冷水跨陆架输送的形成机制[J]. 厦门大学学报(自然科学版), 51(4): 746-752.
|
|
ZHANG YUNYI, JIANG YUWU, 2012. The Mechanism of cold water cross-shelf transport in the continental shelf off Shanwei[J]. Journal of Xiamen University (Natural Science), 51(4): 746-752 (in Chinese with English abstract).
|
[9] |
郑泽宇, 梁博文, 2017. TensorFlow: 实战Google深度学习框架[M]. 北京: 电子工业出版社: 6-9 (in Chinese).
|
[10] |
朱贵重, 胡松, 2019. 基于LSTM-RNN的海水表面温度模型研究[J]. 应用海洋学学报, 38(2): 191-197.
|
|
ZHU GUICHONG, HU SONG, 2019. Study on sea surface temperature model based on LSTM-RNN[J]. Journal of Applied Oceanography, 38(2): 191-197 (in Chinese with English abstract).
|
[11] |
庄桦, 2014. 沿岸海域海温研究进展[J]. 中国水运, 14(2): 194-195 (in Chinese).
|
[12] |
BAI SHAOJIE, KOLTER J Z, KOLTUN V, (2018-04-19) [2023-05-30]. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://arxiv.org/abs/1803.01271v2
|
[13] |
FAWAZ H I, FORESTIER G, WEBER J, et al, 2019. Deep learning for time series classification: a review[J]. Data mining and knowledge discovery, 33: 917-963.
doi: 10.1007/s10618-019-00619-1
|
[14] |
HINTON G, DENG LI, YU DONG, et al, 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 29(6): 82-97.
|
[15] |
SHELHAMER E, LONG J, DARRELL T, 2017. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[16] |
RAWAT W, WANG ZENGHUI, 2017. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 29(9): 2352-2449.
doi: 10.1162/NECO_a_00990
pmid: 28599112
|
[17] |
SHIH SHUNYAO, SUN FANKENG, LEE H Y, 2019. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 108: 1421-1441.
doi: 10.1007/s10994-019-05815-0
|
[18] |
SUTSKEVER I, VINYALS O, LE Q V, 2014. Sequence to sequence learning with neural networks[C]// Proceedings of the conference on advances in neural information processing systems, 2: 3104-3112.
|
[19] |
YAO GUANGLE, LEI TAO, ZHONG JIANDAN, 2019. A review of Convolutional-Neural-Network-based action recognition[J]. Pattern Recognition Letters, 118(2): 14-22.
doi: 10.1016/j.patrec.2018.05.018
|
[20] |
ZHENG GANG, LI XIAOFENG, ZHANG RONGHUA, et al, 2020. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 6(29): eaba1482.
doi: 10.1126/sciadv.aba1482
|