[1] |
康霖, 2016. 西沙群岛海洋渔业资源调查研究[J]. 海洋与渔业 (2): 64-66.
|
|
KANG LIN, 2016. Investigation and study on marine fishery resources in Xisha Islands[J]. Ocean & Fishery, (2): 64-66 (in Chinese).
|
[2] |
李元超, 吴钟解, 梁计林, 等, 2019. 近15年西沙群岛长棘海星爆发周期及爆发原因分析[J]. 科学通报, 64(33): 3478-3484.
|
|
LI YUANCHAO, WU ZHONGJIE, LIANG JILIN, et al, 2019. Analysis on the outbreak period and cause of Acanthaster planci in Xisha Islands in recent 15 years[J]. Chinese Science Bulletin, 64(33): 3478-3484 (in Chinese with English abstract).
|
[3] |
马清霞, 李宁, 李学刚, 等, 2012. 模拟研究沙海蜇消亡过程中海水pH变化及对海水酸化的影响[J]. 海洋科学, 36(12): 12-18.
|
|
MA QINGXIA, LI NING, LI XUEGANG, et al, 2012. The variations of pH and seawater acidification during simulated Nemopilema nomurai decomposing process[J]. Marine Sciences, 36(12): 12-18 (in Chinese with English abstract).
|
[4] |
曲长凤, 宋金明, 李宁, 等, 2016. 海水中沙海蜇消亡对水体碳、氮、磷的释放与补充[J]. 应用生态学报, 27(1): 299-306.
|
|
QU CHANGFENG, SONG JINMING, LI NING, et al, 2016. Release and supplement of carbon, nitrogen and phosphorus from jellyfish (Nemopilema nomurai) decomposition in seawater[J]. Chinese Journal of Applied Ecology, 27(1): 299-306 (in Chinese with English abstract).
|
[5] |
宋金明, 李鹏程, 1996. 南沙群岛海域沉积物-海水界面间营养物质的扩散通量[J]. 海洋科学, 20(5): 43-50.
|
|
SONG JINMING, LI PENGCHENG, 1996. Studies on characteristics of nutrient diffusion fluxes across sediment-water interface in the district of Nansha islands, South China Sea[J]. Marine Sciences, 20(5): 43-50 (in Chinese with English abstract).
|
[6] |
夏荣林, 宁志铭, 余克服, 等, 2022. 长棘海星爆发对珊瑚礁区沉积物营养盐动力学的影响研究[J]. 海洋学报, 44(8): 23-30.
|
|
XIA RONGLIN, NING ZHIMING, YU KEFU, et al, 2022. Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments[J]. Haiyang Xuebao, 44(8): 23-30 (in Chinese with English abstract).
|
[7] |
姚秋翠, 余克服, 廖芝衡, 等, 2022. 棘冠海星爆发及其对珊瑚礁的生态影响研究进展[J]. 生态学报, 42(18): 7517-7528.
|
|
YAO QIUCUI, YU KEFU, LIAO ZHIHENG, et al, 2022. A review of research on crown-of-thorns starfish and their ecological effects on coral reefs[J]. Acta Ecologica Sinica, 42(18): 7517-7528 (in Chinese with English abstract).
|
[8] |
朱士兵, 胡丹妮, 张会领, 等, 2019. 海口湾中间岸段海滩剖面短期时空变化及沉积动态分析[J]. 热带海洋学报, 38(5): 77-85.
doi: 10.11978/2018120
|
|
ZHU SHIBING, HU DANNI, ZHANG HUILING, et al, 2019. Analysis of short-term temporal and spatial changes and sedimentary dynamics at the middle section of Haikou Bay Beach[J]. Journal of Tropical Oceanography, 38(5): 77-85 (in Chinese with English abstract).
|
[9] |
ALAMARU A, BRONSTEIN O, DISHON G, et al, 2009. Opportunistic feeding by the fungiid coral Fungia cruposa on the Moon jellyfish Aurelia urita[J]. Coral Reefs, 28(4): 865.
|
[10] |
ARÍSTEGUI J, GASOL J M, DUARTE C M, et al, 2009. Microbial oceanography of the dark ocean’s pelagic realm[J]. Limnology and Oceanography, 54(5): 1501-1529.
|
[11] |
BENBOW M E, BARTON P S, ULYSHEN M D, et al, 2019. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter[J]. Ecological Monographs, 89(1): e01331.
|
[12] |
BILLETT D S M, BETT B J, JACOBS C L, et al, 2006. Mass deposition of jellyfish in the deep Arabian Sea[J]. Limnology and Oceanography, 51(5): 2077-2083.
|
[13] |
BIRKELAND C, LUCAS J, 1990. Acanthaster planci: major management problem of coral reefs[M]. Boca Raton: CRC Press:257.
|
[14] |
BOS A R, GUMANAO G S, MUELLER B, et al, 2013. Management of crown-of-thorns sea star (Acanthaster planci L.) outbreaks: Removal success depends on reef topography and timing within the reproduction cycle[J]. Ocean & Coastal Management, 71: 116-122.
|
[15] |
BOSTRÖM-EINARSSON L, BONIN M C, MOON S, et al, 2018. Environmental impact monitoring of household vinegar-injections to cull crown-of-thorns starfish, Acanthaster spp.[J]. Ocean & Coastal Management, 155: 83-89.
|
[16] |
BRODIE J, WATERHOUSE J, 2012. A critical review of environmental management of the ‘not so Great’ Barrier Reef[J]. Estuarine, Coastal and Shelf Science, 104: 1-22.
|
[17] |
CHESHER R H, 1969. Destruction of Pacific corals by the sea star Acanthaster planci[J]. Science, 165(3890): 280-283.
|
[18] |
CONDON R H, STEINBERG D K, DEL GIORGIO P A, et al, 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(25): 10225-10230.
doi: 10.1073/pnas.1015782108
pmid: 21646531
|
[19] |
DE’ATH G, FABRICIUS K E, SWEATMAN H, et al, 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(44): 17995-17999.
doi: 10.1073/pnas.1208909109
pmid: 23027961
|
[20] |
DEL GIORGIO P A, COLE J J, 1998. Bacterial growth efficiency in natural aquatic systems[J]. Annual Review of Ecology and Systematics, 29: 503-541.
|
[21] |
DEN HAAN J, HUISMAN J, BROCKE H J, et al, 2016. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse[J]. Scientific Reports, 6: 28821.
doi: 10.1038/srep28821
pmid: 27353576
|
[22] |
DOYLE T K, HOUGHTON J D R, MCDEVITT R, et al, 2007. The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition[J]. Journal of Experimental Marine Biology and Ecology, 343(2): 239-252.
|
[23] |
DUNLOP K M, JONES D O B, SWEETMAN A K, 2018. Scavenging processes on jellyfish carcasses across a fjord depth gradient[J]. Limnology and Oceanography, 63(3): 1146-1155.
|
[24] |
FABRICIUS K E, OKAJI K, DE’ATH G, 2010. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation[J]. Coral Reefs, 29(3): 593-605.
|
[25] |
FURNAS M, MITCHELL A, SKUZA M, et al, 2005. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon[J]. Marine Pollution Bulletin, 51(1/2/3/4): 253-265.
|
[26] |
GUO JING, YU KEFU, WANG YINGHUI, et al, 2019. Potential impacts of anthropogenic nutrient enrichment on coral reefs in the South China Sea: evidence from nutrient and chlorophyll a levels in seawater[J]. Environmental Science Processes & Impacts, 21(10): 1745-1753.
|
[27] |
HANSSON L J, NORRMAN B, 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktic bacteria[J]. Marine Biology, 121(3): 527-532.
|
[28] |
KAYAL M, VERCELLONI J, LISON DE LOMA T, et al, 2012. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities[J]. PLoS One, 7(10): e47363.
|
[29] |
LEBRATO M, DE JESUS MENDES P, STEINBERG D K, et al, 2013. Jelly biomass sinking speed reveals a fast carbon export mechanism[J]. Limnology and Oceanography, 58(3): 1113-1122.
|
[30] |
LEBRATO M, PAHLOW M, OSCHLIES A, et al, 2011. Depth attenuation of organic matter export associated with jelly falls[J]. Limnology and Oceanography, 56(5): 1917-1928.
|
[31] |
LEBRATO M, PITT K A, SWEETMAN A K, et al, 2012. Jelly-falls historic and recent observations: a review to drive future research directions[J]. Hydrobiologia, 690(1): 227-245.
|
[32] |
LI YUXIAO, HAO RUOXING, YU KEFU, et al, 2024. Short-term impact of decomposing crown-of-thorn starfish blooms on reef-building corals and benthic algae: a laboratory study[J]. Water, 16(2): 190.
|
[33] |
MAYOR D J, SANDERS R, GIERING S L C, et al, 2014. Microbial gardening in the ocean’s twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus: fragmentation of refractory detritus by zooplankton beneath the euphotic zone stimulates the harvestable production of labile and nutritious microbial biomass[J]. BioEssays, 36(12): 1132-1137.
|
[34] |
NING X, CHAI F, XUE H, et al, 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 109(C10): C10005.
|
[35] |
NOBRE R L G, CARNEIRO L S, PANEK S E, et al, 2019. Fish, including their carcasses, are net nutrient sources to the water column of a eutrophic lake[J]. Frontiers in Ecology and Evolution, 7: 340.
|
[36] |
PITT K A, KOOP K, RISSIK D, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae)[J]. Journal of Experimental Marine Biology and Ecology, 315(1): 71-86.
|
[37] |
PRATCHETT M S, CABALLES C F, RIVERA-POSADA J A, et al, 2014. Limits to understanding and managing outbreaks of crown-of-thorns Starfish (Acanthaster spp.)[J]. Oceanography Marine Biology, 52: 133-200.
|
[38] |
PRATCHETT M S, LANG B J, MATTHEWS S, 2019. Culling crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s Great Barrier Reef: rationale and effectiveness[J]. Australian Zoologist, 40(1): 13-24.
|
[39] |
QU CHANGFENG, SONG JINMING, LI NING, et al, 2015. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments[J]. Marine Pollution Bulletin, 97(1/2): 199-208.
|
[40] |
REIMER J D, KISE H, WEE H B, et al, 2019. Crown-of-thorns starfish outbreak at oceanic Dongsha Atoll in the northern South China Sea[J]. Marine Biodiversity, 49(6): 2495-2497.
|
[41] |
SEYMOUR R M, BRADBURY R H, 1999. Lengthening reef recovery times from crown-of-thorns outbreaks signal systemic degradation of the Great Barrier Reef[J]. Marine Ecology Progress Series, 176: 1-10.
|
[42] |
SUBALUSKY A L, DUTTON C L, ROSI E J, et al, 2017. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(29): 7647-7652.
doi: 10.1073/pnas.1614778114
pmid: 28630330
|
[43] |
SWEETMAN A K, CHAPMAN A, 2011. First observations of jelly-falls at the seafloor in a deep-sea fjord[J]. Deep Sea Research Part I: Oceanographic Research Papers, 58(12): 1206-1211.
|
[44] |
TINTA T, KLUN K, HERNDL G J, 2021. The importance of jellyfish-microbe interactions for biogeochemical cycles in the ocean[J]. Limnology and Oceanography, 66(5): 2011-2032.
|
[45] |
TINTA T, KOGOVŠEK T, KLUN K, et al, 2019. Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential[J]. Marine Drugs, 17(2): 94.
|
[46] |
TINTA T, KOGOVŠEK T, TURK V, et al, 2016. Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column: a Black Sea case study[J]. Journal of Experimental Marine Biology and Ecology, 475: 19-30.
|
[47] |
TINTA T, MALEJ A, KOS M, et al, 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria[J]. Hydrobiologia, 645(1): 179-191.
|
[48] |
TINTA T, ZHAO ZIHAO, ESCOBAR A, et al, 2020. Microbial processing of jellyfish detritus in the ocean[J]. Frontiers in Microbiology, 11: 590995.
|
[49] |
TITELMAN J, RIEMANN L, SØRNES T A, et al, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity[J]. Marine Ecology Progress Series, 325: 43-58.
|
[50] |
WEST E J, PITT K A, WELSH D T, et al, 2009. Top-down and bottom-up influences of jellyfish on primary productivity and planktonic assemblages[J]. Limnology and Oceanography, 54(6): 2058-2071.
|