Journal of Tropical Oceanography ›› 2024, Vol. 43 ›› Issue (5): 190-202.doi: 10.11978/2023172CSTR: 32234.14.2023172
• Oceanographic Research and Observation • Previous Articles
QI Huandong1,2(), ZHU Cheng2, LI Xuchun2, JING Xindi2, SONG Derui2,3(
)
Received:
2023-11-21
Revised:
2024-01-08
Online:
2024-09-10
Published:
2024-10-10
Supported by:
QI Huandong, ZHU Cheng, LI Xuchun, JING Xindi, SONG Derui. Rule set and multilayer perceptron based quality control method for Argo temperature data*[J].Journal of Tropical Oceanography, 2024, 43(5): 190-202.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 3
The schematic diagrams of the quality control checks. (a) Range check; (b) increasing pressure check; (c) temperature inversion check; (d) density inversion check; (e) profile spike check; (f) climatology check. The red line in the figure indicates the change in the anomalous data, and the blue line indicates the constructed thresholds"
Fig. 5
Quality control effectiveness of the machine learning models. (a) Original distribution of test set data; (b) predicted results of LOF; (c) predicted results of IF; (d) predicted results of SVM; (e) predicted results of DT; (f) predicted results of KNN; (g) predicted results of RF; (h) predicted results of SGD; (i) predicted results of GNB; (j) predicted results of XGB; (k) predicted results of LGB; (l) predicted results of CatBoost; (m) predicted results of NGB; (n) predicted results of MLP"
Tab.2
Results of evaluation metrics for the machine learning models under the cross-validation approach"
模型名称 | TPR | TNR | AUC |
---|---|---|---|
LOF | 0.94 | 0.09 | 0.52 |
IF | 0.95 | 0.06 | 0.51 |
SVM | 0.99 | 0.28 | 0.63 |
DT | 0.99 | 0.59 | 0.79 |
KNN | 0.98 | 0.64 | 0.81 |
RF | 0.99 | 0.55 | 0.77 |
MLP | 0.92 | 0.89 | 0.91 |
SGD | 0.72 | 0.81 | 0.76 |
GNB | 0.86 | 0.60 | 0.73 |
XGB | 0.90 | 0.56 | 0.72 |
LGB | 0.98 | 0.74 | 0.86 |
CatBoost | 0.96 | 0.81 | 0.89 |
NGB | 0.96 | 0.74 | 0.85 |
[1] |
蒋华, 武尧, 王鑫, 等, 2019. 改进K均值聚类的海洋数据异常检测算法研究[J]. 计算机科学, 46(7): 211-216.
doi: 10.11896/j.issn.1002-137X.2019.07.032 |
doi: 10.11896/j.issn.1002-137X.2019.07.032 |
|
[2] |
刘玉龙, 王国松, 侯敏, 等, 2021. 基于深度学习的海温观测数据质量控制应用研究[J]. 海洋通报, 40(3): 283-291.
|
|
|
[3] |
刘增宏, 李兆钦, 卢少磊, 等, 2021. 全球海洋Argo温盐度剖面散点数据集[J]. 全球变化数据学报(中英文), 5(3): 312-321, 451-460.
|
|
|
[4] |
卢少磊, 孙朝辉, 刘增宏, 等, 2016. COPEX和HM2000与APEX型剖面浮标比测试验及资料质量评价[J]. 海洋技术学报, 35(1): 84-92.
|
|
|
[5] |
沈锐, 王德亮, 刘增宏, 等, 2019. HM2000型剖面浮标的主要特征及其应用[J]. 数字海洋与水下攻防, 2(2): 20-27.
|
|
|
[6] |
石洪波, 陈雨文, 陈鑫, 2019. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 14(6): 1073-1083.
|
|
|
[7] |
谭哲韬, 张斌, 吴晓芬, 等, 2022. 海洋观测数据质量控制技术研究现状及展望[J]. 中国科学: 地球科学, 52(3): 418-437.
|
|
|
[8] |
王东晓, 邱春华, 舒业强, 等, 2022. 南海环流多尺度动力过程演变特征与机制研究进展[J]. 海洋科学进展, 40(4): 605-623.
|
|
|
[9] |
许自舟, 宋德瑞, 赵辉, 等, 2009. 海洋环境监测数据质量计算机控制方法研究[J]. 海洋环境科学, 28(3): 320-323.
|
|
|
[10] |
杨剑锋, 乔佩蕊, 李永梅, 等, 2019. 机器学习分类问题及算法研究综述[J]. 统计与决策, 35(6): 36-40.
|
|
|
[11] |
张桐, 2018. 基于Argo数据的海洋温度预测方法研究[D]. 长春: 吉林大学: 1-2.
|
|
|
[12] |
张雪薇, 韩震, 2022. Argo温度数据的ConvGRU模型预测分析[J]. 海洋环境科学, 41(4): 628-635.
|
|
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
Intergovernmental Oceanographic Commission, 2010. GTSPP real-time quality control manual. Revised edition 2010[Z]. Paris: United Nations Educational, Scientific and Cultural Organization.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[1] | SUN Zeming, HAN Shuzong, WANG Mingjie, SU Hanxiang. Statistical study on the influence of typhoon with different path on the temperature of coastal waters of China [J]. Journal of Tropical Oceanography, 2024, 43(5): 17-31. |
[2] | LIN Guihuan, YAN Youfang, LIU Ying. Ocean stratification in the Indonesian-Australian basin and its influencing factors [J]. Journal of Tropical Oceanography, 2024, 43(4): 57-67. |
[3] | MO Danyang, NING Zhiming, YANG Bin, XIA Ronglin, LIU Zhijin. Response of dissimilatory nitrate reduction processes in coral reef sediments of the Weizhou island to temperature changes [J]. Journal of Tropical Oceanography, 2024, 43(4): 137-143. |
[4] | WENG Shaojia, CAI Jinhai, PANG Yunxi, LUO Rongzhen. Application of convolutional neural network to sea surface temperature prediction in the coastal waters [J]. Journal of Tropical Oceanography, 2024, 43(1): 40-47. |
[5] | LIAO Kuo, LI Kailin, DANG Haofei, LIN Bin, ZHAO Dongzhi, LI Hui. Process and characteristics of occurrence and dissipation of sea fog in the west coast of the Taiwan Strait based on coastal automatic weather station* [J]. Journal of Tropical Oceanography, 2024, 43(1): 79-93. |
[6] | ZHANG Xianqing, LI Cai, Zhou Wen, LIU Cong, XU Zhantang, CAO Wenxi, YANG Yuezhong. Studying on diffuse attenuation coefficient in the South China Sea based on volume scattering function and absorption coefficient* [J]. Journal of Tropical Oceanography, 2023, 42(3): 86-95. |
[7] | TANG Chaoli, TAO Xinhua, WEI Yuanyuan, DAI Congming, WEI Heli. Spatiotemporal modal analysis and prediction of surface temperature in East Asia and the Western Pacific* [J]. Journal of Tropical Oceanography, 2022, 41(6): 183-192. |
[8] | SHI Xiaohan, ZOU Dinghui, HE Quan, LI Gang. Photophysiological characteristics of the branch and stolon of macroalga Caulerpa lentillifera (Caulerpaceae, Caulerpa) under different growth light conditions, and their responses to temperature rise [J]. Journal of Tropical Oceanography, 2022, 41(5): 150-160. |
[9] | LI Gang, WAN Mingyue, SHI Xiaohan, QIN Geng, MAI Guangming, HUANG Liangmin, TAN Yehui, ZOU Dinghui. Comparative study on photophysiology of four macroalgae from the Zhongsha Atoll, with special reference to the effects of temperature rise* [J]. Journal of Tropical Oceanography, 2022, 41(3): 101-110. |
[10] | CHEN Kehai, XIE Xuetong, ZHANG Jinlan, ZHENG Yan. An SST dependent geophysical model function for HY-2A scatterometer [J]. Journal of Tropical Oceanography, 2022, 41(2): 90-102. |
[11] | NIE Wangchen, WANG Xidong, CHEN Zhiqiang, HE Zikang, FAN Kaigui. Research and application of global three-dimensional thermohaline reconstruction technology based on neural network [J]. Journal of Tropical Oceanography, 2022, 41(2): 1-15. |
[12] | LI Yang, HUANG Pengqi, LU Yuanzheng, QU Ling, GUO Shuangxi, CEN Xianrong, ZHOU Shengqi, ZHANG Jiazheng, QIU Xuelin. Bottom turbulent mixing of continental slope - deep sea basin in northeastern South China Sea based on high-resolution temperature observation [J]. Journal of Tropical Oceanography, 2022, 41(1): 62-74. |
[13] | WANG Hao, WANG Jing, ZHENG Jiayu. Climatic characteristics and interannual variability of tropical cyclone rapid intensification in the South Indian Ocean [J]. Journal of Tropical Oceanography, 2022, 41(1): 94-105. |
[14] | HE Zikang, WANG Xidong, CHEN Zhiqiang, FAN Kaigui. Reconstructing salinity profile using temperature profile and sea surface salinity [J]. Journal of Tropical Oceanography, 2021, 40(6): 41-51. |
[15] | ZHENG Chengzhi, ZUO Liming, MA Wang, ZHU Qin, WANG Huohuo, LÜ Songhui, CHEN Heng, HUANG Kaixuan. Interactions among Aureococcus anophagefferens, Skeletonema costatum, and Chattonella marina under different temperatures [J]. Journal of Tropical Oceanography, 2021, 40(3): 124-131. |
|