Journal of Tropical Oceanography ›› 2023, Vol. 42 ›› Issue (1): 32-42.doi: 10.11978/2021145CSTR: 32234.14.2021145
Special Issue: 全球变化专题
Previous Articles Next Articles
GAO Na1(), ZHAO Mingli1, MA Yi1, XU Wanming1, ZHAN Haigang2,3, CAI Shuqun2,3,4,5
Received:
2021-10-27
Revised:
2022-03-15
Online:
2023-01-10
Published:
2022-03-03
Contact:
ZHAO Mingli. email: Supported by:
GAO Na, ZHAO Mingli, MA Yi, XU Wanming, ZHAN Haigang, CAI Shuqun. Effect of typhoon on storm surge in the Pearl River Estuary[J].Journal of Tropical Oceanography, 2023, 42(1): 32-42.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 1
Observed frequency of all typhoons entered into the north South China Sea (colors) and the trajectories of all typhoons that may threat the Chiwan station (gray line) (a). Number of tropical cyclones entered into the north South China Sea and reached typhoon intensity or above every month from 1990 to 2019, of which the black part is the number of typhoons affecting the Chiwan station (b). The observation frequency was calculated by dividing the latitude and longitude by 1°, and calculating the number of tropical cyclones in each cell grid"
Fig. 3
Trajectories and intensity of Typhoon Mangkhut in September 2018 (a), The minimum pressure in the center of the typhoon (b), maximum wind speed (c), radius of maximum wind speed (d), distance between the center of typhoon and the Chiwan Station (e), the water level changes observed at the Chiwan Station (f)"
Fig. 4
The trajectories (a, d, g) of the three types of typhoons, the intensification of storm surge at the Chiwan Station (b, e, h), and the scatter plot between the intensification of storm surge at the Chiwan Station and its distance from the center of the typhoon (c, f, i). The colors in Figure a, d and g are the maximum typhoon wind speed observed at the sampling time of each typhoon, and the colors in (b), (e) and (h) are the measured storm surge intensity at the Chiwan Station at the corresponding time"
Fig. 6
The relationship between storm surge and typhoon intensity when the distance between typhoon center and the Chiwan station is 0~500 km (a~c), 500~1000 km (d~f), 1000~1500 km (g~i) and greater than 2000 km (j~l). The first column shows the relationship between storm surge and the minimum pressure in the center of the typhoon, the second column shows the relationship between storm surge and the maximum wind speed, and the third column shows the relationship between storm surge and the radius of the maximum wind speed. The solid red lines in (a~c) show the linear fitting results"
[1] |
陈波, 邱绍芳, 2000. 广西沿海港湾风暴潮增减水与台风路径和地形效应的关系[J]. 广西科学, 7(4): 282-285.
|
|
|
[2] |
陈波, 董德信, 陈宪云, 等, 2017. 南海北部台风引起的广西近岸增减水研究[J]. 海洋湖沼通报, (2): 1-11.
|
|
|
[3] |
董剑希, 李涛, 侯京明, 等, 2014. 广东省风暴潮时空分布特征及重点城市风暴潮风险研究[J]. 海洋学报, 36(3): 83-93.
|
doi: 10.1007/s13131-017-1062-7 |
|
[4] |
广东省海洋与渔业厅, (2017-03-22). 广东省海洋灾害公报2016[EB/OL]. http://nr.gd.gov.cn/zwgknew/tzgg/gg/content/post_3186916.html. in Chinese)
|
[5] |
广东省海洋与渔业厅, (2018-04-23). 广东省海洋灾害公报2017[EB/OL]. http://nr.gd.gov.cn/zwgknew/sjfb/tjsj/content/post_3186924.html. in Chinese)
|
[6] |
郭洪寿, 1991. 我国潮灾灾度评估初探[J]. 南京大学学报, (5): 18-22. (in Chinese)
|
[7] |
韩晶, 2019. 台风山竹和天鸽对珠海沿海风暴潮增水影响[J]. 吉林水利, (8): 47-49, 53.
|
|
|
[8] |
韩树宗, 潘嵩, 2013. 杭州湾台风风暴潮增水过程的数值分析[J]. 中国海洋大学学报, 43(7): 1-6.
|
|
|
[9] |
黄世昌, 李玉成, 赵鑫, 等, 2008. 浙江沿海超强台风作用下风暴潮增水数值分析[J]. 海洋工程, 26(3): 58-64.
|
|
|
[10] |
梁连松, 张钊, 顾冬明, 等, 2020. 典型路径下台风移速调整对鳌江站增水的数值分析[J]. 海洋预报, 37(5): 59-66.
|
|
|
[11] |
刘秋兴, 傅赐福, 李明杰, 等, 2018. “天鸽”台风风暴潮预报及数值研究[J]. 海洋预报, 35(1): 29-36.
|
|
|
[12] |
刘士诚, 陈永平, 谭亚, 等, 2021. 珠江河网1822号台风“山竹”期间风暴增水模拟及特性分析[J]. 海洋预报, 38(2): 12-20.
|
|
|
[13] |
牛海燕, 刘敏, 陆敏, 等, 2011. 中国沿海地区台风致灾因子危险性评估[J]. 华东师范大学学报(自然科学版), (6): 20-25, 35.
|
|
|
[14] |
潘明婕, 孔俊, 杨芳, 等, 2019. 台风路径对磨刀门水道咸潮上溯动力过程的影响机制[J]. 热带海洋学报, 38(3): 53-67.
doi: 10.11978/2018081 |
doi: 10.11978/2018081 |
|
[15] |
王康发生, 尹占娥, 殷杰, 2011. 海平面上升背景下中国沿海台风风暴潮脆弱性分析[J]. 热带海洋学报, 30(6): 31-36.
doi: 10.11978/j.issn.1009-5470.2011.06.031 |
|
|
[16] |
王敏, 尹义星, 陈晓旸, 等, 2020. 异常北折台风“洛坦”与异常西折台风“奥玛”路径的对比及预报[J]. 热带海洋学报, 39(1): 53-65.
doi: 10.11978/2019042 |
doi: 10.11978/2019042 |
|
[17] |
王培涛, 于福江, 刘秋兴, 等, 2010. 福建沿海精细化台风风暴潮集合数值预报技术研究及应用[J]. 海洋预报, 27(5): 7-15.
|
|
|
[18] |
魏晓宇, 刘雪峰, 2010. 闸坡站风暴潮增水与热带气旋登陆点及路径的关系[J]. 台湾海峡, 29(1): 122-127.
|
|
|
[19] |
吴海军, 相海波, 谢巨伦, 2012. 永暑礁风暴潮增水极值预报初探[J]. 科技信息, (9): 41-42.
|
|
|
[20] |
谢亚力, 黄世昌, 王瑞锋, 等, 2007. 钱塘江河口围涂对杭州湾风暴潮影响数值模拟[J]. 海洋工程, 25(3): 61-67.
|
|
|
[21] |
杨玄阁, 朱良生, 2017. 琼州海峡台风风暴潮增水过程的数值分析[J]. 人民珠江, 38(1): 43-47.
|
|
|
[22] |
尹宝树, 王涛, 侯一筠, 等, 2001. 渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究[J]. 海洋与湖沼, 32(1): 109-116.
|
|
|
[23] |
殷成团, 张金善, 熊梦婕, 等, 2019. 我国南海沿海台风及暴潮灾害趋势分析[J]. 热带海洋学报, 38(1): 35-42.
doi: 10.11978/2018037 |
doi: 10.11978/2018037 |
|
[24] |
尹尽勇, 徐晶, 曹越男, 等, 2012. 我国海洋气象预报业务现状与发展[J]. 气象科技进展, 2(6): 17-26.
|
|
|
[25] |
于福江, 董剑希, 叶琳, 2015. 中国风暴潮灾害史料集: 1949-2009[M]. 北京: 海洋出版社.
|
|
|
[26] |
张敏, 罗军, 胡金磊, 等, 2019. 雷州市沿海风暴潮淹没危险性评估[J]. 热带海洋学报, 38(2): 1-12.
doi: 10.11978/2018067 |
doi: 10.11978/2018067 |
|
[27] |
自然资源部, 海洋预警监测司, (2019-04-28). 中国海洋灾害公报2018[EB/OL]. http://gi.mnr.gov.cn/201905/t20190510_2411197.html.
|
Natural Resources Ministry, Marine Early Warning and Monitoring Division, (2019-04-28). Bulletin of China marine disaster 2018[EB/OL]. http://gi.mnr.gov.cn/201905/t20190510_2411197.html.
|
|
[28] |
doi: 10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2 |
[29] |
doi: 10.1016/j.csr.2005.12.015 |
[30] |
doi: 10.1016/j.ocemod.2011.11.001 |
[31] |
doi: 10.1080/16742834.2011.11446946 |
[32] |
doi: 10.3390/w12061662 |
[33] |
doi: 10.1002/2017GL073680 |
[34] |
doi: 10.1029/2008GL033564 |
[35] |
doi: 10.1257/jep.15.4.143 |
[36] |
doi: 10.1007/s00376-020-0211-7 |
[37] |
|
[38] |
|
[39] |
doi: 10.1126/science.abb9038 pmid: 33510027 |
[40] |
doi: 10.1016/j.ecss.2019.01.024 |
[41] |
doi: 10.1175/JTECH-D-12-00119.1 |
[1] | SUN Zeming, HAN Shuzong, WANG Mingjie, SU Hanxiang. Statistical study on the influence of typhoon with different path on the temperature of coastal waters of China [J]. Journal of Tropical Oceanography, 2024, 43(5): 17-31. |
[2] | SHANG Jie, WU Ying, ZOU Yike, MA Jingwen. Retrieval of typhoon precipitation rate over ocean surface based on FY-3D/MWRI Data* [J]. Journal of Tropical Oceanography, 2024, 43(5): 32-40. |
[3] | DING Yiting, DONG Dibo. Study on comprehensive risk assessment of storm surges for Fujian Province from the perspective of resilience [J]. Journal of Tropical Oceanography, 2024, 43(1): 126-136. |
[4] | ZHANG Zheran, HU Junyang, ZHOU Kai, ZHANG Penghui, XING Jiuxing, CHEN Shengli. Storm surge simulations of the coastal area of Shenzhen using different types of typhoon meteorological fields—a case study of Typhoon Mangkhut* [J]. Journal of Tropical Oceanography, 2023, 42(6): 1-14. |
[5] | LI Junmin, LI Bo, CHEN Wuyang, LIU Junliang. Observation characteristics of coastal waves in Sanya and their responses to typhoon processes [J]. Journal of Tropical Oceanography, 2023, 42(4): 25-35. |
[6] | SHU Aiqing, XU Dongmei, LI Hong, WU Haiying, SHEN Feifei, DEND Hua, BAI Yawen. Assimilating MWHS-2 radiance of FY-3D satellite and its influence on the forecast of Typhoon Mitag* [J]. Journal of Tropical Oceanography, 2022, 41(5): 17-28. |
[7] | GUO Junli, SHI Lianqiang, CHEN Shenliang, ZHANG Min, CHANG Yang, ZHANG Daheng. Dynamic variations of different sedimentary geomorphology of sandy and gravel embayed beaches on the Zhujiajian Island during typhoon season [J]. Journal of Tropical Oceanography, 2022, 41(4): 82-96. |
[8] | XU Jie, GUO Jibing, CHEN Zhiqiang, ZHU Zhihui, WANG Qin, TANG Yanling. Comparative study on the contribution of various influential factors and characteristics analysis of an extra-tropical storm surge caused by cold front in the Yangshan Port and its adjacent area [J]. Journal of Tropical Oceanography, 2022, 41(4): 126-135. |
[9] | XI Yangyang, WANG Riming, FENG Bingbin, CHEN Bo. Morphodynamic processes of the Yintan Beach in response to typhoon [J]. Journal of Tropical Oceanography, 2022, 41(4): 97-104. |
[10] | DENG Guotong, LIU Mincong, XING Jiuxing, SHENG Jinyu, ZHOU Kai, CHEN Shengli. Analysis on the influencing factors of storm surges near Shenzhen [J]. Journal of Tropical Oceanography, 2022, 41(3): 91-100. |
[11] | LI Zhuo, LI Weibiao, ZHANG Aoqi. Analysis of diurnal variation characteristics of precipitation over South China before typhoon landfall [J]. Journal of Tropical Oceanography, 2022, 41(2): 26-37. |
[12] | SUN Fenglin. Disaster loss assessment of storm surge based on Dempster-Shafer theory of evidence [J]. Journal of Tropical Oceanography, 2022, 41(1): 75-81. |
[13] | SHEN Qianying, JI Xiaomei, ZHANG Wei, XU Yanwen. Impact of estuarine storm surge barriers on spatiotemporal variation of tidal asymmetry in a delta* [J]. Journal of Tropical Oceanography, 2021, 40(5): 1-9. |
[14] | WANG Yuanqi, YANG Yang, ZHOU Liang, WANG Yaping, GAO Shu. Interpreting the origin of coastal boulders on a coral reef flat at Xiaodonghai of Hainan Island based on storm wave energy analysis [J]. Journal of Tropical Oceanography, 2021, 40(4): 110-121. |
[15] | ZHANG Xiaohua, BI Xueyan, GAO Zhiqiu, LIU Changwei, PENG Wenwu, ZENG Zhihua, YANG Nan, LI Yubin. Parameterizations of drag coefficient and aerodynamic roughness length using the turbulence data collected during typhoons Hagupit and Chanthu* [J]. Journal of Tropical Oceanography, 2021, 40(2): 1-6. |
|