Journal of Tropical Oceanography ›› 2025, Vol. 44 ›› Issue (1): 66-81.doi: 10.11978/2024034CSTR: 32234.14.2024034
• Marine Hydrology • Previous Articles Next Articles
LIU Jie1,2(), YAN Tong1(
), JING Zhiyou1
Received:
2024-01-30
Revised:
2024-02-22
Online:
2025-01-10
Published:
2025-02-10
Contact:
YAN Tong
Supported by:
CLC Number:
LIU Jie, YAN Tong, JING Zhiyou. Observations of near-inertial waves generated by three successive typhoons in the northwestern South China Sea[J].Journal of Tropical Oceanography, 2025, 44(1): 66-81.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 1
Paths of Typhoons Saudel (a), Molave (b), and Vamco (c) and the distribution of the sea surface wind when three typhoons passed over the mooring, respectively. The magenta pentagram is the location of the mooring, the black line with red dots is the path of the typhoon, the red circle is the typhoon's category 7 wind circle, the black arrows are the wind speed vector, and the filled colors are the wind magnitude"
Fig. 4
(a) Time series of 10 m wind speeds above the sea surface at the mooring station; (b) Time depth variations of NIKE, with the red line denoting the mixed layer depth, the black solid line representing the 10 J·m-3 NIKE, and the black dashed line representing the 4 J·m-3; (c) Vertical shear rate of near-inertial current. The shading represents the periods when Typhoons Saudel (22 October to 26 October), Molave (27 October to 05 November), and Vamvo (13 November to 23 November) passed over the mooring"
Fig. 9
(a), (b) and (c) are the time-averaged vertical distributions of NIKE for the first five baroclinic modes by DMD in the three typhoon events, respectively; (d), (e) and (f) are vertical distribution of NIKE, black lines represent the sum of energy of the DMD modes, and the red lines represent the observed total NIKE"
Fig. 11
Vertical profiles and corresponding time series of the first EOF mode of the near-inertial currents (a), (b) and (c) are for the second and third EOF modes, respectively. The red and blue lines represent the zonal and meridional current, respectively. The shading represents the periods when Typhoons Saudel (22 October to 26 October), Molave (27 October to 05 November), and Vamvo (13 November to 23 November) passed over the mooring"
Fig. 12
The power spectrum of average velocity at depths ranging from 50 to 150 m for the typhoons Saudel&Molave (thick black line) and typhoon Vamco (thick gray line). The black vertical lines represent the local inertial frequency f, the diurnal tidal frequency O1, and the semidiurnal tidal frequency M2, respectively. The shaded area represents the near-inertial frequency band"
[1] |
高大鲁, 王新怡, 李秉天, 等, 2016. 南海北部海域对台风尼格的响应特征分析[J]. 中国海洋大学学报(自然科学版), 46(6): 8-13,
|
|
|
[2] |
黄妍丹, 许洁馨, 刘军亮, 等, 2018. 基于实测资料的南海北部台风“海鸥”致近惯性振荡研究[J]. 热带海洋学报, 37(6): 16-25.
|
|
|
[3] |
江森汇, 吴泽文, 舒勰俊, 2019. 基于观测的南海西沙海域深层近惯性振荡特征分析[J]. 海洋通报, 38(5): 543-552.
|
|
|
[4] |
马永贵, 张书文, 齐义泉, 等, 2019. 南海西北部上层海洋对连续台风的近惯性响应[J]. 中国科学: 地球科学, 49(4): 731-740.
|
|
|
[5] |
于璐莎, 翟荣伟, 鲁远征, 等, 2020. 南海北部台风和中尺度暖涡对近惯性振荡的影响[J]. 海洋学报, 42(1): 1-11.
|
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
DE BOYER MONTÉGUT C,
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[1] | XU Chao, LONG Lijuan, LI Sha, YUAN Li, XU Xiaolu. Systematic reorganization of historical data of scientific investigation in the South China Sea and its affiliated islands and reefs 3. data sharing service and application [J]. Journal of Tropical Oceanography, 2024, 43(5): 158-165. |
[2] | XU Chao, LONG Lijuan, LI Sha, HE Yunkai, YUAN Li, XU Xiaolu. Systematic reorganization of historical data of scientific investigation in the South China Sea and its affiliated islands and reefs 1. data reorganization technology and application [J]. Journal of Tropical Oceanography, 2024, 43(5): 143-149. |
[3] | XU Chao, LONG Lijuan, LI Sha, XU Xiaolu, YUAN Li. Systematic reorganization of historical data of scientific investigation in the South China Sea and its affiliated islands and reefs 2. data curation and application [J]. Journal of Tropical Oceanography, 2024, 43(5): 150-157. |
[4] | LIU Yuan, KE Zhixin, LI Kaizhi, TAN Yehui, LIANG Junce, ZHOU Weihua. Zooplankton community in the coastal waters of eastern Guangdong under the influence of human activities and ocean currents [J]. Journal of Tropical Oceanography, 2024, 43(4): 98-111. |
[5] | LIU Didi, ZHANG Xiyang, SUN Fulin, WANG Mingzhuang, TAN Fei, SHI Qi, WANG Guan, YANG Hongqiang. Microbial communities and specific strains within beachrocks of the South China Sea: implications for the origin of beachrock* [J]. Journal of Tropical Oceanography, 2024, 43(4): 112-122. |
[6] | JIANG Lyumiao, CHEN Tianran, ZHAO Kuan, ZHANG Ting, XU Lijia. Experimental study on bioerosion of marginal reefs in the Weizhou Island, northern South China Sea [J]. Journal of Tropical Oceanography, 2024, 43(3): 155-165. |
[7] | XU Lijia, LIAO Zhiheng, CHEN Hui, WANG Yongzhi, HUANG Baiqiang, LIN Qiaoyun, GAN Jianfeng, YANG Jing. Community structure of scleractinian corals in the northern South China Sea and their responses to the marine heatwaves [J]. Journal of Tropical Oceanography, 2024, 43(3): 58-71. |
[8] | ZHAO Minghui, YUAN Ye, ZHANG Jiazheng, ZHANG Cuimei, GAO Jinwei, WANG Qiang, SUN Zhen, CHENG Jinhui. New developments on the rift-breakup of the continent-ocean transition zone in the northern margin of the South China Sea [J]. Journal of Tropical Oceanography, 2024, 43(2): 173-183. |
[9] | HUANG Yu, WANG Lin, MAI Zhimao, LI Jie, ZHANG Si. Isolation and characterization of sand fixation ability of bacteria in biological soil crusts of the tropical islands, South China Sea [J]. Journal of Tropical Oceanography, 2023, 42(6): 101-110. |
[10] | WANG Chenyan, SHI Jingwen, YAN Annan, KANG Yaru, WANG Yuxuan, QIN Suli, HAN Minwei, ZHANG Ruijie, YU Kefu. Bioaccumulation characteristics and source apportionment of organophosphate esters in Acanthaster planci from the South China Sea [J]. Journal of Tropical Oceanography, 2023, 42(5): 30-37. |
[11] | LI Niu, DI Pengfei, FENG Dong, CHEN Duofu. The impact of cold seepage on geochemical indices for redox conditions of marine sediments ―Site F active seep site in the northeastern South China Sea* [J]. Journal of Tropical Oceanography, 2023, 42(5): 144-153. |
[12] | ZHANG Zhisheng, XIE Lingling, LI Junyi, LI Qiang. Comparative analysis of mesoscale eddy evolution during life cycle in marginal sea and open ocean: South China Sea and Kuroshio Extension [J]. Journal of Tropical Oceanography, 2023, 42(4): 63-76. |
[13] | YANG Lei, WEN Jinhui, WANG Qiang, LUO Xi, HUANG Huaming, HE Yunkai, CHEN Ju. Recent research progress in the influence of tropical cyclones on the Luzon Strait transport* [J]. Journal of Tropical Oceanography, 2023, 42(3): 40-51. |
[14] | ZHAO Zhongxian, SUN Zhen, MAO Yunhua, ZHANG Huodai. Heterogeneous extension and pulsed tectonic subsidence in the northern South China Sea margin* [J]. Journal of Tropical Oceanography, 2023, 42(3): 96-115. |
[15] | LIU Qinyan, LI Wenlian, SHI Rui, CHEN Ju, LI Chunhui, XIE Qiang. The characteristics of eddy in western boundary current of South China Sea and its relationship with winter circulation [J]. Journal of Tropical Oceanography, 2023, 42(3): 52-66. |
|