| [1] | 杜广鹏, 范建良, 2010. 方解石族矿物的拉曼光谱特征[J]. 矿物岩石, 30(4): 32-35. | 
																													
																							|  | DU GUANGPENG, FAN JIANLIANG, 2010. Characteristics of Raman spectral of calcite group minerals[J]. Journal of Mineralogy and Petrology, 30(4): 32-35 (in Chinese with English abstract). | 
																													
																							| [2] | ALT J C, HONNOREZ J, LAVERNE C, et al, 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater‐basalt interactions[J]. Journal of Geophysical Research, 91(B10): 10309-10335. | 
																													
																							| [3] | ALT J C, TEAGLE D A H.2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801[J]. Chemical Geology, 201(3-4): 191-211. | 
																													
																							| [4] | ALT J C, TEAGLE D A H, LAVERNE C, et al, 1996. Ridge-flank alteration of upper ocean crust in the eastern Pacific: Synthesis of results for volcanic rocks of Holes 504B and 896A[G/OL]//ALT J C, KINOSHITA H, STOKKING L B, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX (Ocean Drilling Program): 435-450. [2018-01-09]. . | 
																													
																							| [5] | BARCKHAUSEN U, ENGELS M, FRANKE D, et al, 2014. Evolution of the South China Sea: revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 58: 599-611. | 
																													
																							| [6] | BRIAIS A, PATRIAT P, TAPPONNIER P, 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 98(B4): 6299-6328. | 
																													
																							| [7] | COGGON R M, TEAGLE D A H, COOPER M J, et al, 2004. Linking basement carbonate vein compositions to porewater geochemistry across the eastern flank of the Juan de Fuca Ridge, ODP Leg 168[J]. Earth and Planetary Science Letters, 219(1-2): 111-128. | 
																													
																							| [8] | COGGON R M, TEAGLE D A H, SMITH-DUQUE C E, et al, 2010. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins[J]. Science, 327(5969): 1114-1117. | 
																													
																							| [9] | COOGAN L A, GILLIS K M, 2013. Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation[J]. Geochemistry, Geophysics, Geosystems, 14(6): 1771-1786. | 
																													
																							| [10] | DE CHOUDENS-SANCHEZ V, GONZALEZ L A, 2009. Calcite and aragonite precipitation under controlled instantaneous supersaturation: elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism[J]. Journal of Sedimentary Research, 79(6): 363-376. | 
																													
																							| [11] | DING WEIWEI, CHEN YIFENG, SUN ZHEN, et al, 2017. Chemical compositions and precipitation timing of basement calcium carbonate veins from the South China Sea[J]. Marine Geology, 392: 170-178. | 
																													
																							| [12] | EDWARDS H G M, VILLAR S E J, JEHLICKA J, et al, 2005. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(10): 2273-2280. | 
																													
																							| [13] | ELDERFIELD H, WHEAT C G, MOTTL M J, et al, 1999. Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 172(1-2): 151-165. | 
																													
																							| [14] | FERNÁNDEZ-DÍAZ L, PUTNIS A, PRIETO M, et al, 1996. The role of magnesium in the crystallization of calcite and aragonite in a porous medium[J]. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, 66(3): 482-491. | 
																													
																							| [15] | FISHER A T, DAVIS E E, HUTNAK M, et al, 2003. Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank[J]. Nature, 421(6923): 618-621. | 
																													
																							| [16] | GIVEN R K, WILKINSON B H, 1985. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates[J]. Journal of Sedimentary Research, 55(1): 109-119. | 
																													
																							| [17] | HERMAN R G, BOGDAN C E, SOMMER A J, et al, 1987. Discrimination among carbonate minerals by Raman spectroscopy using the laser microprobe[J]. Applied Spectroscopy, 41(3): 437-440. | 
																													
																							| [18] | LI C F, LIN J, KULHANEK K, et al, 2015a. Proceedings of the international ocean discovery program, 349: South China Sea tectonics: college station, TX (international ocean discovery program) [G/OL].[2018-01-09]. . | 
																													
																							| [19] | LI CHUNFENG, LI JIABIAO, DING WEIWEI, et al, 2015b. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research, 120(3): 1377-1399. | 
																													
																							| [20] | LI CHUNFENG, SONG TAORAN, 2012. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. Chinese Science Bulletin, 57(24): 3165-3181. | 
																													
																							| [21] | LI CHUNFENG, XU XING, LIN JIAN, et al, 2014b. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. | 
																													
																							| [22] | LI SANZHONG, GELDMACHER J, HAUFF F, et al, 2014a. Composition and timing of carbonate vein precipitation within the igneous basement of the Early Cretaceous Shatsky Rise, NW Pacific[J]. Marine Geology, 357: 321-333. | 
																													
																							| [23] | LI SANZHONG, SUO YANHUI, YU SHAN, et al, 2016. Orientation of joints and arrangement of solid inclusions in fibrous veins in the Shatsky Rise, NW Pacific: implications for crack‐seal mechanisms and stress fields[J]. Geological Journal, 51(S1): 562-578. | 
																													
																							| [24] | MCARTHUR J M, HOWARTH R J, SHIELDS G A, 2012. Strontium isotope stratigraphy[M]//GRADSTEIN F M, OGG J G, OGG G M. The geologic time scale. Amsterdam: Elsevier: 127-144. | 
																													
																							| [25] | MORSE J W, ARVIDSON R S, LÜTTGE A, 2007. Calcium carbonate formation and dissolution[J]. Chemical Reviews, 107(2): 342-381. | 
																													
																							| [26] | RAUSCH S, BÖHM F, BACH W, et al, 2013. Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years[J]. Earth and Planetary Science Letters, 362: 215-224. | 
																													
																							| [27] | SCHRAMM B, 2004. Color atlas of low-temperature alteration features in basalts from the Southern East Pacific Rise[J]. Geochemistry, Geophysics, Geosystems, 5(6): Q06006. | 
																													
																							| [28] | SPINELLI G A, FISHER A T, 2004a. Hydrothermal circulation within topographically rough basaltic basement on the Juan de Fuca Ridge flank[J]. Geochemistry, Geophysics, Geosystems, 5(2): Q02001. | 
																													
																							| [29] | SPINELLI G A, GIAMBALVO E R, FISHER A T, 2004b. Sediment permeability, distribution, and influence on fluxes in oceanic basement[M]//DAVIS E E, ELDERFIELD H. Hydrogeology of the oceanic lithosphere. Cambridge: Cambridge University Press: 151-188. | 
																													
																							| [30] | TAYLOR B, HAYES D E, 1983. Origin and history of the South China Sea Basin[M]//HAYES D E. The tectonic and geologic evolution of southeast Asian seas and islands: Part 2, volume 27. Washington, DC: American Geophysical Union: 23-56. | 
																													
																							| [31] | THOMPSON G, 1991. Metamorphic and hydrothermal processes: basalt—seawater interactions[M]//FLOYD P A. Oceanic basalts. Dordrecht: Springer: 148-173. | 
																													
																							| [32] | WHEAT C G, ELDERFIELD H, MOTTL M J, et al, 2000. Chemical composition of basement fluids within an oceanic ridge flank: Implications for along-strike and across-strike hydrothermal circulation[J]. Journal of Geophysical Research, 105(B6): 13437-13447. | 
																													
																							| [33] | WHITE S N, 2009. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals[J]. Chemical Geology, 259(3-4): 240-252. | 
																													
																							| [34] | YAN QUANSHU, SHI XUEFA, CASTILLO P R, 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: a petrologic perspective[J]. Journal of Asian Earth Sciences, 85: 178-201. | 
																													
																							| [35] | YATABE A, VANKO D A, GHAZI A M, 2000. Petrography and chemical compositions of secondary calcite and aragonite in Juan de Fuca Ridge basalts altered at low temperature [G/OL]//FISHER A, DAVIS E E, ESCUTIA C. Proceedings of the ocean drilling program, scientific results, College station, TX (ocean drilling program): 137-148. [2018-01-09]. | 
																													
																							| [36] | ZHANG GUOLIANG, CHEN LIHUI, JACKSON M G, et al, 2017. Evolution of carbonated melt to alkali basalt in the South China Sea[J]. Nature Geoscience, 10(3): 229-235. |