[1] |
高川, 陈茂楠, 周路, 等, 2022. 2020-2021年热带太平洋持续性双拉尼娜事件的演变[J]. 中国科学: 地球科学, 52(12): 2353-2372.
|
|
GAO CHUAN, CHEN MAONAN, ZHOU LU, et al, 2022. The 2020-2021 prolonged La Niña evolution in the tropical Pacific[J]. Science China: Earth Sciences, 65(12): 2248-2266.
|
[2] |
胡石建, 李诗翰, 2022. 海洋热浪研究进展与展望[J]. 地球科学进展, 37(1): 51-64.
|
|
HU SHIJIAN, LI SHIHAN, 2022. Progress and prospect of marine heatwave study[J]. Advances in Earth Science, 37(1): 51-64 (in Chinese with English abstract).
|
[3] |
李泓, 李丽平, 王盘兴, 2001. 太平洋地区海气系统年代际变率研究的若干进展[J]. 南京气象学院学报, 24(4): 591-598.
|
|
LI HONG, LI LIPING, WANG PANXING, 2001. Advance in study on inter-decadal climate variability of the Pacific atmosphere-ocean system[J]. Journal of Nanjing Institute of Meteorology, 24(4): 591-598 (in Chinese with English abstract).
|
[4] |
缪予晴, 徐海明, 刘佳伟, 2021. 西北太平洋夏季海洋热浪的变化特征及海气关系[J]. 热带海洋学报, 40(1): 31-43.
|
|
MIAO YUQING, XU HAIMING, LIU JIAWEI, 2021. Variation of summer marine heatwaves in the Northwest Pacific and associated air-sea interaction[J]. Journal of Tropical Oceanography, 40(1): 31-43 (in Chinese with English abstract).
|
[5] |
王庆元, 李清泉, 李琰, 等, 2021. 1982—2019年渤、黄海海洋热浪时空变化特征分析[J]. 海洋学报, 43(12): 38-49.
|
|
WANG QINGYUAN, LI QINGQUAN, LI YAN, et al, 2021. Temporal and spatial characteristics of marine heat waves in the Bohai Sea and Yellow Sea during 1982-2019[J]. Haiyang Xuebao, 43(12): 38-49 (in Chinese with English abstract).
|
[6] |
王越奇, 宋金明, 袁华茂, 等, 2019. 近千年来台湾以东黑潮主流区沉积物来源及其对气候波动的响应[J]. 海洋科学进展, 37(2): 231-244.
|
|
WANG YUEQI, SONG JINMING, YUAN HUAMAO, et al, 2019. Sedimentary provenance and corresponding to the climate fluctuation of the Kuroshio area of eastern Taiwan for the last 1000 years[J]. Advances in Marine Science, 37(2): 231-244 (in Chinese with English abstract).
|
[7] |
张荣华, 高川, 王宏娜, 等, 2021. 中间型海洋-大气耦合模式及其ENSO模拟和预测[M]. 北京: 科学出版社 (in Chinese).
|
[8] |
张荣华, 2024. 用于厄尔尼诺-南方涛动(ENSO)研究的海气耦合模式综述: 中间型和混合型模式[J]. 海洋与湖沼, 55(1): 1-23.
|
|
ZHANG RONGHUA, 2024. A review of progress in coupled ocean-atmosphere model developments for ENSO studies: Intermediate coupled models and hybrid coupled models[J]. Oceanologia et Limnologia Sinica, 55(1): 1-23 (in Chinese with English abstract).
|
[9] |
FRÖLICHER T L, FISCHER E M, GRUBER N, 2018. Marine heatwaves under global warming[J]. Nature, 560(7718): 360-364.
|
[10] |
HOBDAY A J, ALEXANDER L V, PERKINS S E, et al, 2016. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 141: 227-238.
|
[11] |
HOBDAY A J, OLIVER E C J, GUPTA A S, et al, 2018. Categorizing and naming marine heatwaves[J]. Oceanography, 31(2): 162-173.
|
[12] |
HOLBROOK N J, SCANNELL H A, SEN GUPTA A, et al, 2019. A global assessment of marine heatwaves and their drivers[J]. Nature Communications, 10: 2624.
|
[13] |
HU SHIJIAN, LI SHIHAN, ZHANG YING, et al, 2021. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean[J]. Environmental Research Letters, 16(10): 104024.
|
[14] |
OLIVER E C J, LAGO V, HOBDAY A J, et al, 2018. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability[J]. Progress in Oceanography, 161: 116-130.
|
[15] |
OLIVER E C J, BURROWS M T, DONAT M G, et al, 2019. Projected marine heatwaves in the 21st century and the potential for ecological impact[J]. Frontiers in Marine Science, 6: 00734.
|
[16] |
OLIVER E C J, BENTHUYSEN J A, DARMARAKI S, et al, 2021. Marine heatwaves[J]. Annual Review of Marine Science, 13(1): 313-342.
|
[17] |
PEARCE A, LENANTON R, JACKSON G, et al, 2011. The "marine heat wave" off Western Australia during the summer of 2010/11[R]. Government of Western Australia Department of Fisheries, Fisheries Research Report No.222. Western Australia: Department of Fisheries: 1-40.
|
[18] |
QIN HUILING, KAWAMURA H, 2010. Air-sea interaction throughout the troposphere over a very high sea surface temperature phenomenon[J]. Geophysical Research Letters, 37(1): L041685.
|
[19] |
SCANNELL H A, PERSHING A J, ALEXANDER M A, et al, 2016. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950[J]. Geophysical Research Letters, 43(5): 2069-2076.
|
[20] |
WU LIXIN, CAI WENJU, ZHANG LIPING, et al, 2012. Enhanced warming over the global subtropical western boundary currents[J]. Nature Climate Change, 2: 161-166.
|
[21] |
ZHANG RONGHUA, GAO CHUAN, FENG LICHENG, 2022. Recent ENSO evolution and its real-time prediction challenges[J]. National Science Review, 9(4): nwac052.
|